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Abstract—Pre-training a deep neural network on the ImageNet
dataset is a common practice for training deep learning models,
and generally yields improved performance and faster training
times. The technique of pre-training on one task and then
retraining on a new one is called transfer learning. In this paper
we analyse the effectiveness of using deep transfer learning for
character recognition tasks. We perform three sets of experiments
with varying levels of similarity between source and target tasks
to investigate the behaviour of different types of knowledge
transfer. We transfer both parameters and features and analyse
their behaviour. Our results demonstrate that no significant
advantage is gained by using a transfer learning approach
over a traditional machine learning approach for our character
recognition tasks. This suggests that using transfer learning does
not necessarily presuppose a better performing model in all cases.

Index Terms—deep learning, transfer learning, knowledge
transfer, character recognition

I. INTRODUCTION

Learning to drive a car makes learning to drive a truck
easier, and knowing how to speak Spanish makes learning
Portuguese easier. Humans find it easier to learn something
new when it is similar to something they already know.
With this intuition, can a machine learner exploit previous
experience or information for a new task?

This is the motivation behind transfer learning. We expect
that, like humans, learning algorithms may benefit from knowl-
edge transferred from similar or related tasks. This poses many
questions such as: How can this transfer be implemented?
What makes tasks similar? Does knowledge from dissimilar
tasks transfer well or even at all? How much knowledge should
be transferred?

Traditional machine learning models are formulated with the
assumption that the training and testing data are independent
and identically distributed (i.i.d), whereas transfer learning
does not make this assumption. Thus the distributions of the
training and testing data may be different which allow for
different domains or tasks to be associated with each data set.
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Owing to the recent successes in deep learning [[1]]-[3], this
research focuses on transfer learning using deep artificial neu-
ral networks. Large, very deep models have recently achieved
valuable results on a variety of tasks, but require a massive
amount of training data, time, and computing resources. Trans-
fer learning allows us to leverage existing deep models to train
new deep models with a more moderate amounts of computing
resources and training data in a reasonable amount of time [4]].
This is achieved by transferring knowledge learnt for one task
(source task) to a different task (target task).

Deep convolutional neural networks have been particularly
successful for many complex tasks: mainly within the field of
computer vision [5]]. A common approach used for image clas-
sification tasks is to pre-train convolutional neural networks
(CNNs) on the ImageNet dataset, before training it for the
actual task. As a result, ImageNet’s transferability has been
well researched [4]], [6].

This work focuses on knowledge transfer within the domain
of character recognition. A commonly used dataset in deep
learning is MNIST, an image collection of handwritten digits,
and is often used as a baseline for comparing network archi-
tectures [7]. We perform transfer learning experiments using
MNIST, as well as the NIST Special Database 19, which is a
larger dataset containing images of handwritten digits as well
as characters [8]].

Our work aims to investigate whether transfer helps improve
a network’s convergence as well as its performance on the tar-
get task. Does transfer between related tasks work better than
transfer between dissimilar tasks? Should we be transferring
network parameters (fine-tuned transfer) or learned features
(frozen-weight transfer)?

We perform three sets of transfer experiments, and compute
performance metrics across all three sets over the course of
training. Each experiment varies in how related the source and
target tasks are, in order to quantify how task similarity affects
transfer. Within each set control, frozen-weight and fine-tuned
networks are trained, analysed and compared. This allows us
to compare how both parameter transfer and feature transfer
perform for the same task.

We observe that fine-tuned network performance closely
resembles that of randomly-initialised networks. Performance
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for frozen-weight transfer, where the network acts as a fixed
feature extractor, is affected by the relatedness of the source
and target tasks. We demonstrate that a transfer learning
approach does not necessarily provide better starting points
or improved accuracy for a network on a specific task.

II. BACKGROUND AND RELATED WORK
A. Transfer Learning

We are interested in transferring knowledge from one prob-
lem to improve performance for a new problem. To formalise
this we introduce notation and definitions first given by Pan
and Yang [9]:

First we define a domain: a domain D is characterised by a
feature space X', and a marginal probability distribution P(X)
where X = {x1,...,x,} € X. X is the space of all possible
feature vectors, and X is a particular learning sample.

Given a specific domain D = {X,P(X)}, a task T is
defined as consisting of a label space )/, and a predictive
function f(-) which is used to predict the corresponding label
for a new instance x (i.e. f(x) := P(y|x)). This is denoted
as 7 ={Y, f()}-

For simplicity, it is assumed that there is only one source
domain, Dg, and one target domain, Dr. The source domain
data is denoted as Dg = {(xs,,¥s,);---,(Xs,,,Ys, )}, where
xg, € Xg and yg, € Ys are the data instance and its
corresponding label respectively. Similarly, we denote the
target domain data as Dr = {(X1y,y1,),---, (X1, 9T, }s
where xr, € X7 and yr, € Vr.

Now, transfer learning is formally defined:

Given a source domain Dg and target domain Dr, with
corresponding source and target tasks Tg and Tr, transfer
learning aims to improve the predictive function f(-) in Dr,
by using knowledge from Dg and Ts, where Ds # Dr or
Ts # Tr.

This definition states that transfer learning aims to gener-
alise from knowledge learnt in one domain for a specific task,
to another domain or another task. When the source domain
and target domain are the same, i.e. Dg = Dp, and the
learning tasks are the same, i.e. Tg = 7Trp, this amounts to
a traditional machine learning problem.

The tasks learnt from source domains {Dg,,...,Dg, },
namely {7s,,...,7Ts,}, are called support tasks by Thrun
and O’Sullivan [10], who note that the existence of these
support tasks differentiates a transfer learning problem from a
traditional machine learning problem.

B. Convolutional Neural Networks

Artificial neural networks (ANNs) work by combining ar-
tificial neurons with other artificial neurons in a non-linear
manner, so that complex representations can be learnt to
achieve some task. Conventionally, these neurons are arranged
in layers. The first layer represents the network’s input and the
last layer represents the network’s output. Any layers between
the input and output layers are called hidden layers. The
presence of hidden layers is what is referred to as a deep
neural network.
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Fig. 1: Example CNN architecture with alternating convolution
and subsampling layers [11].

Convolutional neural networks (CNNs), are a specific class
of ANNs created specifically for image processing tasks.
CNNs learn features to recognise shapes with a high degree
of invariance to translation, scaling, skewing, and other types
of distortion [[TT]].

CNNs achieve this by including specific types of layers with
different respective purposes:

e Feature extraction: Each neuron takes inputs only from a
local receptive field in the previous layer, thus extracting
its local features.

e Feature mapping: Each layer of the network consists
of multiple feature maps, where individual neurons are
constrained to share the same weights. This reduced the
number of parameters, and allows a convolution with a
small kernel to be performed on each feature map.

o Subsampling: Each convolutional layer is followed by
a layer that performs local averaging and subsampling.
This reduces the feature map’s sensitivity to shifts and
distortion. This allows a reduction in the feature map’s
size, so more specific features can be learnt.

The final layer of a CNN used for classification is a fully-
connected layer where the final feature maps are connected to
the output neurons representing each class. Thus a CNN can be
thought of as a feature extractor (the stacked convolution and
subsampling layers that produce feature maps) and a classifier
(the fully-connected final layer). This is shown in Fig. [T} For
transfer learning, we can transfer the feature extractor, and
retrain the classifier on the new task.

C. Related Work

1) Deep Transfer Learning: Our work focuses on deep
transfer learning since deep learning algorithms discover good
multi-level representations in input distributions: with higher-
level learned features defined in terms of lower-level features.
Deep learning is well suited for transfer learning because it
focuses on learning these representations, and in particular
“abstract” representations that disentangle the factors of vari-
ation in the input [12].

Clune, Bengio, et. al investigate how transferable the
features learnt by a deep neural network are. It is noted that
CNNs learn the same features in the first or second layer,
(which can be understood as Gabor filters and colour blobs).
These first-layer features are called general, and the last layer
features of a trained network are called specific, as they



are task-dependent. Thus, there must be a transition between
general and specific features somewhere in the network.

The paper investigates transferring different numbers of
layers from the pre-trained model. The transferred weights
were either frozen, where the transferred weights could not
be updated, or fine-tuned, where the transferred weights are
re-learnt for the new task. It was found that after transferring
more than two layers and keeping the weights frozen, transfer
accuracy decreased, indicating that task-specific features were
learnt beyond the first two layers. Fine-tuning the weights
not only avoided this drop in performance, but also improved
generalisation when compared with networks trained directly
on the target task.

2) ImageNet: A common approach for image classification
tasks is to pre-train CNNs on ImageNet, a massive image
dataset with hand-annotated labels and a hierarchical structure
[14]. Following this, the network is trained on the actual task,
and improved training performance is usually achieved [4],
[6], [13]. This begs the question: why does pre-training on
ImageNet achieve this improved performance?

Kornblith, et al. [4] investigate the hypothesis that better
ImageNet performance implies better transfer performance for
vision tasks. The research analyses both classification archi-
tectures and features of ImageNet models and their effects on
transferability. Their results conclude that ImageNet accuracy
is very highly correlated with the fine-funed transfer accuracy.
However, ImageNet accuracy did not necessarily predict accu-
racy when fine-tuning weights, although models converge to
their best accuracy levels much quicker. On average there was
a 17-fold speedup over random network initialisation.

Why does the correlation between ImageNet performance
and transfer performance exist? Huh, er al. [6] investigate
which aspects of ImageNet are most critical for learning good
general-purpose features. Insights gained include: fine-grained
recognition does not appear to be essential for learning good
features to transfe CNNs that are trained for coarse-grained
classification appear to induce features that are useful in
discrimination between fine-grained categories, and subclasses
with common visual or spatial structures help the CNN learn
more general features and thus improves transferability.

3) Deep Transfer Learning for Character Recognition:
Ciresan, et al. [[15]] analyse transfer learning for various char-
acter recognition tasks using deep neural networks. Datasets
of handwritten Latin and Chinese characters were used. Three
sets of transfer experiments were performed: Digits to up-
percase characters, Chinese characters to uppercase letters
and Uppercase letters to Chinese characters. The number
of layers transferred were varied, and in all cases, better
performance and improved learning convergence was achieved
when compared with randomly initialised networks.

I'This is recognising small semantic differences between subclasses in the
ImageNet hierarchy. e.g. pugs vs bulldogs. This is as opposed to coarse-
grained recognition e.g. cats vs dogs.

III. EXPERIMENTAL METHODOLOGY

Our work aims to investigate similar sets of deep transfer
learning problems within digit and character classification. The
datasets we work with are MNIST and the NIST Standard
Database 19 (henceforth referred to as NIST) [8]]. The MNIST
dataset contains grayscale images of handwritten digits with
size 28x28 pixels. NIST contains images of handwritten digits
as well as both uppercase and lowercase Latin characters. The
NIST images are of size 128x128 pixels. Due to the difference
in size, the MNIST images are upsampled to 128x128 when
used.

Specifically, we use the “by_class” partition of NIST, where
images are grouped by their label: the ASCII value for the
corresponding character. We use the “train” directory as the
training set, and the “hsf_4” directory as the testing set, as is
advised [&]].

A. Experiments

We perform three sets of transfer learning experiments on
digit and character classifiers using CNNs: specifically, the
chosen network architecture is ResNet-18 [16|]. The source and
target tasks for each set are given in Table [T

TABLE I: Sets of experiments with source and target tasks.

Exp. set | Source task (7g) Target task (77)
1 MNIST NIST Digits
MNIST NIST Digits + Characters
3 NIST Digits NIST Characters

These three experiment sets were selected as each one cor-
responds to a different problem involving knowledge transfer.
For MNIST to NIST Digits, the source and target domains
(hand-written character recognition) and tasks (10-digit clas-
sification) are the same, i.e. Dg = Dy and Tg = Tr.
This amounts to a normal machine learning problem, where
knowledge transfer is investigated between different datasets,
i.e. different samples from the same feature space AXjigjis. For
both MNIST to NIST Digits + Characters and NIST Digits to
NIST Characters, we have Dg # Dp and Tg # Tr and are
thus transfer learning problems. However, the digit classes are
contained in both MNIST and the full NIST datasets. Hence,
the label space for MNIST is a subset of the label space for
NIST, i.e. Ymnist C Yaist- This differentiates experiment sets
2 and 3, where Y5 C Y1 and Vs N Y1 = () respectively.

For each of the experiment sets given above we inves-
tigate the behaviour for the target task control model, the
frozen weight transfer and the fine-tuned transfer. The target
task control model corresponds to a network trained on 7
with random weight initialisation. Frozen weight transfer is
achieved by allowing only the parameters of the final layer
of the pre-trained model to be learnt; all other parameters are
kept fixed. Fine-tuned transfer is where all the parameters of
the pre-trained model are allowed to be re-trained on 7.

For transfer to be performed, models need to be pre-trained
on the source tasks. We pre-train networks on MNIST and
NIST Digits, save their parameters, and use these as the initial



parameters for the respective transfer models. Thirty CNNs are
trained for each of these transfer types with various metrics
logged after each training epoch. The networks are trained for
up to 20 epochs, or where the early stopping criteria is met.
The loss function £(6) used is the Cross-Entropy Loss, and
the early stopping criteria is |L§e’”;2 — Et(eksf 1)’ < 107°, where k
is the epoch number. This means the network will stop training
early when only a marginal improvement is made on the out-
of-sample (test) loss.

The network architecture, optimiser and learning rates are
kept constant throughout all experiments: the optimiser used
is Adam [17)], and a learning rate, o« = 0.001, is selected as
informed by empirical tests and previous literature [3].

The in-sample (training) loss, out-of-sample loss, and the
out-of-sample F1-scores are logged at every epoch to quantify
convergence as well as model performance. We use F1-scores
instead of accuracy scores due to class imbalance in NIST,
where there are substantially more digit samples than character
samples. For more detailed insight into the specific features
that are transferred, we construct confusion matrices and per-
class accuracy plots for each experiment set.

IV. RESULTS AND DISCUSSION
A. MNIST to NIST Digits

For this set of experiments, we observe that the fine-tuned
transfer and the control networks perform very well on the
NIST Digits classification (Fig. [2). We note that the fine-tuned
transfer has slightly better out-of-sample performance for the
first two epochs of training as compared with the control
networks, but both models perform the same thereafter. After
this 2 epoch point, both these models converge and plateau at a
mean F1-score of approximately 0.98. This result suggests that
transferring parameters provides a slightly better starting point
for the network when compared to using randomly initialised
parameters for this problem, and thus converges in fewer
epochs than the control model. However, for more than 2
epochs of training, no improvement in performance is gained
by using fine-tuned transfer.

Frozen-weight transfer performs worse than both the control
and fine-tuned networks. This demonstrates that the features
transferred from MNIST are able to classify a large portion of
the NIST Digits, but these features cannot capture the variation
in the target task as well as the fine-tuned network can. It is
possible that upscaling the MNIST images hinders the frozen
transfer performance, and it remains to be seen whether an
improvement can be made by downscaling the images instead.
The frozen-weight performance keeps improving over time
and does not plateau within the 20-epoch training period.
Despite the truncated training period, the gradient of the frozen
network performance indicates that the network will not reach
comparable performance to the other two transfer types in a
reasonable amount of training time. Per-class accuracy analy-
sis of the frozen-weight transfer demonstrate that the network
performs consistently worse on certain classes throughout its
training.

B. MNIST to NIST Digits + Characters

As in the previous experiment, we observe that the shapes
of both the control networks and fine-tuned transfer graphs are
quite similar. However for this problem the networks do not
plateau: instead they reach their respective peaks at around 6
epochs, and their performance deteriorates gradually thereafter
(see Fig. [3). Initially, the fine-tuned network performs better
than the control model, and we note with less variance in
its performance. This implies that transferring parameters
provides a moderately better starting point on the full NIST
set more regularly than random parameter initialisation does.
Both networks achieve peak mean F1-scores just above 0.82,
indicating no significant performance gains are achieved by
undertaking parameter transfer.

Frozen-weight transfer again performs more poorly than
the other two networks. This is expected as the domains and
tasks are now different, and the features learnt on the digits
may not be useful in discriminating between the combined
characters and digits. The frozen-weight network performance
improves with more training, with a similar shape to that seen
in the previous experiment set. Thus we can draw the same
conclusion: that the frozen network will not reach similar
performance to the fine-tuned and control networks in a
reasonable amount of training time.

After plotting per-class accuracy scores across training, we
can visualise how well specific features are transferring. From
this analysis, we observe that the frozen network performs
much better on the digits than on the characters. After a
single epoch of training, the frozen-weight networks incor-
rectly classify all samples of the lowercase letters “c”, “f”,
“g”, “m”, “0”, “p”, “s”, “u” and “v”. This is probably due
to these characters being spatially similar to their respective
uppercase letters. After more epochs of training the frozen
networks, not much improvement is made for these classes
(Fig fia), indicating that the features transferred from MNIST
are not useful in classifying the lowercase characters on their
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own. The per-class accuracy scores for the fine-tuned networks
show a marked improvement for the corresponding classes’
performance after re-training the parameters (Fig fb).

C. NIST Digits to NIST Characters

In this experiment, the fine-tuned transfer performs slightly
worse than the control networks do (see Fig. [3). This demon-
strates that the parameters transferred provide a worse starting
point than random initialisation does for classifying NIST
characters. This is quite different to the behaviour seen in the
other experiment sets, where the control and fine-tune transfer
perform comparably. This is possibly due to the differences
in label spaces between this task and the other two tasks: i.e.
here we have JVg ¢ YV whereas the other sets have Vg C Vrp.

The frozen networks once again perform much worse than
the fine-tune and control networks do. We observe a similar
peak Fl-error rate of roughly 42% as Ciresan, et al.
for the identical transfer problem. The shape of the graph
leads to the same deduction about performance after the 20
epoch cut-off period as for the previous frozen networks.
Per-class accuracy analysis shows that the network performs
badly on certain classes (e.g. “0”, “c”), then later improve
on these classes but worsen on other classes. This result
demonstrates that transferring the features learnt for NIST
Digits is not particularly beneficial for discriminating between
the 52 classes of characters.

Overall, all three transfer types perform more poorly on
NIST Characters than for the full NIST set. This is due to the
networks performing better on the digits and thus improving
the overall Fl-score for the full NIST dataset. This is seen in
per-class analysis and noted in related research [18].

“ 29

D. Summary of results

Overall we observe that transferring features (frozen-weight
transfer) performs significantly worse than both randomly ini-
tialised networks and parameter transfer (fine-tuned transfer)
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Fig. 3: Per epoch out-of-sample F1-scores for MNIST to NIST
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across all experiment sets. This indicates that the features
learnt on 7g are not complex enough to discriminate between
classes in Tr, even for the case where Tg = 7Tr. Despite
this, frozen transfer for MNIST to NIST Digits achieves sub-
stantially better Fl-scores than for the other frozen networks
(Fig. 6] due to the overlap in source and target tasks. Random
initialisation predicts an upper bound for fine-tuned transfer
performance in all three sets. The latter provides improved
convergence in certain tasks but with diminishing performance
gains after more training. Per-class accuracy analysis over
training demonstrates that feature transfer is limited by the
features it learns on 7Tg, whereas fine-tuning the networks
allow these feature maps to be tweaked to perform better on
Tr.

In all our experiment sets, we find that a transfer learning
approach provides no significant benefits for learning the target
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sets.

tasks, both for network performance and its convergence. This
is contrary to the results demonstrated for transfer learning
using ImageNet where improved accuracy and model conver-
gence were achieved [4], [6], [[13]. This suggests that by itself,
transfer learning (and specifically deep transfer learning) does
not necessarily imply an improved or more robust model, at
least within the domains we perform our experiments.

V. CONCLUSION

In this paper, we set up experiments to investigate properties
of different types of knowledge transfer, specifically for char-
acter recognition tasks. We compare randomly initialised net-
works to both frozen-weight networks (transferring features)
and fine-tuned networks (transferring parameters). We demon-
strate that the randomly initialised networks perform better or
similarly to the fine-tuned networks on target tasks, and thus
no improvements in performance are achieved. Frozen-weight
transfer performs considerably worse than the other types of
transfer for all sets of experiments.

Our results demonstrate that deep transfer learning does not
provide any substantial benefit when compared to traditional
deep learning for the character recognition problems we pose.
Amid many recent successes in transfer learning, especially
with ImageNet, our work provides cases where knowledge
transfer is not particularly useful. Thus, contrary to the notion
that knowledge transfer necessarily implies better network
performance or convergence, we provide counterexamples
where this is not the case.
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