
Article

The International Journal of
Robotics Research
2023, Vol. 42(4-5) 263–288
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649231167207
journals.sagepub.com/home/ijr

Automatic encoding and repair of reactive
high-level tasks with learned abstract
representations

Adam Pacheck1, Steven James2, George Konidaris3 and Hadas Kress-Gazit1

Abstract
We present a framework for the automatic encoding and repair of high-level tasks. Given a set of skills a robot can perform,
our approach first abstracts sensor data into symbols and then automatically encodes the robot’s capabilities in Linear
Temporal Logic (LTL). Using this encoding, a user can specify reactive high-level tasks, for which we can automatically
synthesize a strategy that executes on the robot, if the task is feasible. If a task is not feasible given the robot’s capabilities,
we present two methods, one enumeration-based and one synthesis-based, for automatically suggesting additional skills for
the robot or modifications to existing skills that would make the task feasible. We demonstrate our framework on a Baxter
robot manipulating blocks on a table, a Baxter robot manipulating plates on a table, and a Kinova arm manipulating vials,
with multiple sensor modalities, including raw images.

Keywords
Task repair, skill encoding, abstraction generation

1. Introduction

Generally useful robots will be required to generate in-
telligent behavior from high-level task specifications,
especially if they are to be used by non-experts. Robots
should have the ability to reason about their actions (or
skills), a task’s goals and its constraints, and generate the
behavior necessary to achieve the task, autonomously. One
promising formalism for describing tasks and skills is
Linear Temporal Logic (LTL) (Pnueli 1977). LTL allows
one to encode (i) skills that have nondeterministic out-
comes, (ii) safety constraints, (iii) reactive tasks, where the
robot responds to the environment, and (iv) tasks with
complex goals that go beyond reaching a goal state (as is
typical in planning languages such as PDDL (McDermott
et al., 1998)). Furthermore, there exist different algorithms
that enable a robot to synthesize a controller that is
guaranteed to complete a specified task for fragments of
LTL, such as generalized reactivity(1) (GR(1)) (Bloem
et al., 2012).

However, writing LTL specifications is not trivial. Since
it is a discrete logic, it requires an abstraction of the
problem. Often, abstractions are handcrafted or constructed
from a simplified model of the world which may not fully
capture the outcomes of the robot’s skills. Recently, work
has looked at creating abstractions directly from sensor data
(Konidaris et al., 2018; Jetchev et al., 2013; Mugan and
Kuipers 2009; Ugur and Piater 2015a), but those approaches
have not been extended to seamlessly integrate with mission

specification approaches that employ formal languages such
as LTL.

In approaches to synthesizing controllers from LTL
specifications, the robot skills and task are encoded as LTL
formulas and then the algorithms find a strategy such that
the task is guaranteed to be achieved, if feasible (Kress-
Gazit et al., 2018). However, if the task is not possible given
the current skills of the robot, it is difficult to understand
why, much less what needs to be done to make the task
possible. Several methods for debugging LTL specifications
have been proposed (e.g., Raman and Kress-Gazit (2013);
Chatterjee et al. (2008); Könighofer et al. (2009)) along with
methods for suggesting modifications to specifications (e.g.,
Pacheck et al. (2019, 2020); Fainekos (2011); Kim et al.
(2015)). When debugging specifications, the user still needs
to decide how to repair the specification. In general,
methods for finding suggestions that repair a specification
often require changing the task, rather than changing the
robot’s skills to allow the robot to complete the task as
specified.

1Cornell University, Ithaca, NY, USA
2University of the Witwatersrand, Johannesburg, South Africa
3Brown University, Providence, RI, USA

Corresponding author:
Adam Pacheck, Department of Mechanical Engineering, Cornell
University, 124 Hoy Rd, Ithaca, NY 14853, USA.
Email: akp84@cornell.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231167207
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-4349-1888
https://orcid.org/0000-0003-4366-4125
mailto:akp84@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649231167207&domain=pdf&date_stamp=2023-05-16

Here, we build on the work in Pacheck et al. (2019)
and Pacheck et al. (2020). As in Pacheck et al. (2019), we
demonstrate automatically encoding robot skills (that are
given to the robot by a user) in LTL with symbols
generated from sensor data using the methods proposed
in Konidaris et al. (2018). In addition, we use the methods
in Konidaris et al. (2018) to generate symbols from raw
images, which has not been demonstrated before. By
creating abstractions, and encoding skills directly from
sensor data, we are able to take into account unmodeled
nondeterminism in a robot’s skills without having to hand
design abstractions. A user is then able to use these
abstractions to specify a high-level task for the robot. If
the robot is always able to accomplish the task, we can
use existing methods to generate a strategy that will
guarantee that the robot will accomplish the task (e.g.,
Bloem et al. (2012)). If the task is not possible, we
propose two algorithms for repair—enumeration-based
and synthesis-based—that will automatically suggest
additional skills or modifications to skills that would
allow the robot to successfully accomplish the task as
specified by the user. In this work, checking whether the
task is possible and, if not, repairing it, is done offline,
before task execution. The work in this paper extends
Pacheck et al. (2019) and Pacheck et al. (2020); we
extend the enumeration-based repair algorithm of
Pacheck et al. (2019) to allow for suggestions containing
more than one skill. Additionally, we expand the
synthesis-based repair algorithm of Pacheck et al. (2020)
to allow for the repair of reactive tasks, where the robot
behavior depends on the behavior of the uncontrolled
environment. Based on the skill suggestions, it is the
responsibility of the user to implement the physical skills
on the robot. We demonstrate our approach on two new
tasks and a new physical robot (the Kinova arm in ad-
dition to the Baxter).

Contributions: Given a set of skills a robot is able to
perform, we present a framework that uses sensor data to
automatically create an abstraction and encode skills in
LTL and then, given a task written as an LTL formula over
the abstraction, provides skill suggestions to repair in-
feasible tasks. Specifically, (a) We propose a method to
automatically encode the robot capabilities into LTL, using
propositions generated directly from sensor data as pro-
posed in Konidaris et al. (2018). The encoded capabilities
are then used to automatically synthesize high-level robot
behaviors to accomplish a user-specified task. (b) If a user-
specified task is not feasible due to a missing skill, we
present two approaches—enumeration-based and synthe-
sis-based—for automatically suggesting skills that repair
the task (i.e., make it executable by the robot). (c) We
demonstrate our approach on two physical systems: a
Baxter robot manipulating blocks and pushing plates, and
a Kinova arm manipulating vials; furthermore, we dem-
onstrate the symbol generation process of Konidaris et al.
(2018) using raw images in addition to previously used
sensor modalities.

2. Related work

This work deals with abstractions, planning, synthesis,
and repair. Each of these areas is often dealt with indi-
vidually, with overlap between some, but rarely all, of the
areas.

Abstraction Creation: To enable robots to perform high-
level tasks, the robot’s capabilities, state, and environment
are typically abstracted into predicates that include the
robot’s skills and their effects on the robot’s state and en-
vironment. These predicates are often abstractions of the
state space (Kress-Gazit et al., 2018; Mazo et al., 2010;
Finucane et al., 2010).

There are several existing approaches to generating
abstractions directly from low-level observations. These
include learning symbols to model an agent’s skills
(Konidaris et al., 2018), modeling an agent with parame-
terized actions (Ames et al., 2018), and learning agent-
centric symbols that can be transferred to new tasks in
simple video games (James et al., 2020). Ugur and Piater
(2015a, b) learn object-centric representations for a ma-
nipulation task. While their system can be used for symbolic
planning on a physical robot, object features are specified
prior to learning. This approach is extended to learn rep-
resentations directly from raw image data using a neural
network (Ahmetoglu et al., 2020). In both cases, however,
certain predicates are manually inserted to generate a sound
representation.

Jetchev et al. (2013) learn relational symbols and op-
erators directly from geometric data. However, the size of
the search space is large, requiring one dimension for every
parameter of every symbol, which restricts its ability to scale
to large problems. Mugan and Kuipers (2009, 2011) iter-
atively discretize a continuous state space to construct a
model suitable for planning. Skills are then learned to reach
these discretized states. This can be seen as a “symbols-
first” approach, where skills are learned to achieve an initial
discretization, which is then refined as necessary.

Asai and Fukunaga (2018) learn deterministic action
operators directly from pixels using an autoencoder, where
the bottleneck layer represents the set of propositions set to
true and false. However, it is unclear how to extend the
approach to the stochastic setting. A similar approach
produces deterministic object-centric representations (Asai
2019), but the symbols are encoded implicitly and cannot be
transformed into a language that can be used by existing
planners.

While all of these approaches to generate abstraction can
learn representations for planning, they lack a mechanism to
correct a model that is imperfect or insufficient to solve a
given task. Recent works have begun to bridge the gap of
modifying models that are insufficient to solve a task
(Pacheck et al., 2019, 2020).

Planning: Planning algorithms and frameworks use ab-
stractions to find a sequence of commands to reach a goal
state (Fikes and Nilsson 1971; Fox and Long 2003; Ghallab
et al., 2016). If there is uncertainty in the outcome of skills,

264 The International Journal of Robotics Research 42(4-5)

planners exist that will return the sequence of skills that is
most likely to accomplish the task, but often require re-
planning when an unexpected effect occurs (e.g., Yoon et al.
(2007)). When there is uncertainty in sensing, initial state,
and actuation, conditional planning can return a plan that
will take these into account (Ghallab et al., 2016). If the
robot cannot observe all of its environment, conformant
planning generates a plan for a robot to accomplish its goal
(Ghallab et al., 2016). However, these goals are typically
defined as a desired end state, while we consider more
complex tasks. Additionally, if a planner fails to find a plan,
to the best of our knowledge, planners are unable to suggest
new skills (“actions” in the planning domain) that result in a
valid plan.

Task and Motion Planning: Task and Motion Planning
(TAMP) uses actions or skills that have preconditions and
postconditions, often defined using a STRIPS-style
framework (Fikes and Nilsson 1971) (for a review see
Garrett et al. (2021)). In TAMP, tasks are often to achieve a
goal state, or set of states, while in this work, we specify
objectives as LTL formulas, that naturally capture different
desired task properties such as conditional statements,
safety constraints, sequencing of goals and reactions to
uncontrolled events. Given a task, TAMP finds a solution by
typically iterating between symbolic search, and geometric
motion planners; TAMP may be performed offline in a
simulated environment, or online with a physical robot. In
our approach, we check before execution if a given set of
skills can be composed to solve the task, and if not, perform
repair offline. In general, TAMP works well for tasks that
require the robot to ensure the environment reaches a de-
sired state (e.g., rearranging objects on shelves) and where
motion and manipulation occurs in highly cluttered envi-
ronments (e.g., Srivastava et al. (2014); Muhayyuddin et al.
(2017); Lee et al. (2021); Dantam et al. (2018)). The ap-
proach proposed here is better suited for tasks that can be
performed with a small, well designed, set of skills but that
capture complex, temporally extended objectives that in-
clude reachability, safety, and conditional constraints.

Synthesis: Work in synthesis for robotics from temporal
logic specifications (Kress-Gazit et al., 2018) allows one to
specify a reactive high-level task for a robot and produce
either a strategy guaranteed to succeed, or a proof that the
task cannot be accomplished (e.g., Lahijanian et al. (2012);
He et al. (2018); Wongpiromsarn et al. (2010); DeCastro
and Kress-Gazit (2016); Kress-Gazit et al. (2009); He et al.
(2019)).

Specification Debugging: Using synthesis, robots can
find a strategy to accomplish a task that accounts for all
possible outcomes of their skills and changes in the envi-
ronment. However, if there does not exist a strategy to
accomplish a task, it is difficult even for expert users to
determine the cause, much less find a solution. If completion
of a task cannot be guaranteed, work has enabled synthesis
algorithms to provide explanations as to what caused the
problem (e.g., Raman and Kress-Gazit (2013); Chatterjee
et al. (2008); Könighofer et al. (2009)). For fragments of

LTL, such as GR(1), synthesis algorithms can also produce
counterstrategies that provide details on why the specifi-
cation cannot be satisfied (Könighofer et al., 2009). Tools
such as Slugs (Ehlers and Raman 2016) exist that allow
users to step through strategies and counterstrategies for
debugging purposes.

Specification Repair: Beyond providing methods to
debug specifications, work has proposed methods to pro-
vide repair suggestions and automated fixes to be made to
specifications (Alur et al., 2013; Li et al., 2011). Some
frameworks allow for certain aspects of a specification to be
skipped at runtime if they are not possible (Lahijanian et al.,
2016). In Lahijanian et al. (2016), the task is split into safety
constraints that must always be satisfied and liveness
guarantees that should be satisfied if possible. Work by
Fainekos (2011) and Kim et al. (2015) also consider revising
specifications.

The work mentioned above (Fainekos 2011; Kim et al.,
2015; Alur et al., 2013; Li et al., 2011; Lahijanian et al.,
2016) focuses on restricting the behavior of the environment
or modifying the goals of the robot to make the task pos-
sible. In this work, we provide suggestions that extend the
capabilities of the robot through additional skills or mod-
ifications to skills that are grounded in the sensor-based
abstract representation. Instead of changing what we would
like the robot to do, we give it additional capabilities that
allow it to accomplish the original desired task.

3. Preliminaries

3.1. Skills

We model the abilities of the robot as a set of skills, A,
designed and given to the robot by the user, operating over a
world with a continuous state space ðx1,…, xnÞ 2X4R

n.
This state space may include the location of objects of
interest, the robot’s end effector, etc. In the case of a high-
dimensional state space, such as an image, we use inde-
pendent component analysis to reduce the dimensionality of
the state space (Hyvärinen and Oja 2000; Konidaris et al.,
2018). Each skill a2A has a region from which it is ap-
plicable, termed the precondition of a, Pre(a) 4 X. The
application of a will result in the state being in the effect set
Eff(a) 4 X. We introduce the example in Figure 1 to il-
lustrate the main ideas of skills and symbol generation. In
this two-dimensional space, a robot has two skills a1 and a2
that allow it to move between regions, as shown by the
arrows.

3.2. Symbol generation

The process of symbol generation (Konidaris et al., 2018)
automatically constructs a set of symbols which are used
for planning. This process assumes a set of data, D � X ×
A ×X has been collected by randomly executing robot
skills. Each element of the data consists of (xpre, a, xpost)2D
where xpre 2 Pre(a), a2A, and xpost 2 Eff(a). During

Pacheck et al. 265

symbol generation, we cluster the effect set of a skill into
distinct effect sets using DBSCAN (Ester et al., 1996;
Konidaris et al., 2018). Each effect set Eff(a) is split, as
needed, into j 2 {1,…, k(a)} possible effect sets, denoted by
Effj(a) 4 X. In Figure 1, a1 can be executed from Pre(a1)
and has a nondeterministic outcome, resulting in either
Eff1(a1) or Eff

2(a1).
The values of some ximay matter in determining whether

a skill can be applied, while the values of others may not.
We denote this in the precondition mask of a,
pre�maskðaÞ½a� 2B

n, where pre � mask(a)(i) = True
whether the value of xi influences if a can be applied, and
False otherwise. We create a classifier to test inclusion in
Pre(a), which is defined for xi for which pre � mask(a)(i) =
True . Similarly, when a skill is applied, it may change some
or all of the state variables. We denote this in the effect mask,
ef f �maskjðaÞ 2B

n, where eff � maskj(a)(i) = True if the
value of xi is modified by the application of a in the jth

outcome and False otherwise. In Figure 1, to apply a1, the
values of both x1 and x2 matter, so pre � mask(a1) = {True,
True}. However, we need only consider the value of x1 to
determine if a2 can be applied, so pre � mask(a2) = {True,
False}. Effect 1 of a1 changes the value of x1 and x2 so eff�
mask1(a1) = {True, True}, while effect 2 only changes the
value of x1, so eff � mask2(a1) = {True, False}.

We define factors f 2 F ⸦ 2X that denote which state
variables xi always change together. Here, F is the set of all
factors. A separate symbol σ 2 Σ is created1 for each a, j, and
fwhen eff�maskj(a)(i) = True"xi2 f. We add subscripts to
σ and say each σa,j,f grounds to a set over the state variables
xi 2 f. We fit either a Gaussian or use Kernel Density Es-
timation with a Gaussian kernel with mean μ and standard
deviation sd. We consider Gðσa, j, xiÞ ¼ fx2X j jx� μj<
5sdg4X to be the set of states spanned by five standard
deviations from the mean of the fit. If the raw data is found
to be the same by a two-sample Kolmogorov-Smirnov test

(Hollander et al., 2014) or in the case of higher dimensions if
the mean and variance are similar (Konidaris et al., 2018),
the two symbols are merged into one symbol. The set of
symbols referring to a single factor f is Σf ¼ fσa, j, f j
a2A, j2f1,…, kðaÞgg. The set of all symbols is Σ =
[f2FΣf. For readability, when f = {xi}, we denote σa,j,f as
σa, j, xi.

In Figure 1(b), Eff1(a1) results in two symbols, σa1, 1, x1
and σa1, 1, x2, because eff � mask1(a1) = {True, True}. Only
one symbol, σa1, 2, x1 is generated from Eff2(a1) as eff �
mask2(a1) = {True, False}. In this example, all factors are
singletons.

During the symbol generation process, skills that have
different effects from different preconditions are partitioned
into multiple skills (Konidaris et al., 2018).

3.3. Linear Temporal Logic

Let AP be a set of atomic propositions and π 2AP be a
Boolean variable. The syntax of a formula in LTL (Pnueli
1977) obeys the following grammar:

φ : : ¼ π j¬φj φ⋁φ jsφj φ U φ

where negation (¬,“not”) and disjunction (⋁,“or”) are
Boolean operators and s (“next”) and U (“until”) are
temporal operators. We define True = φ ⋁¬φ and False =
¬True. Given these operators, one can derive conjunction
(φ1 ⋀ φ2 ≡¬(¬φ1 ⋁¬φ2)), implication (φ1 → φ2 ≡¬φ1 ⋁ φ2),
equivalence (φ1 ↔ φ2 ≡ (φ1 → φ2) ⋀ (φ2 → φ1)), eventually
ðàφ ≡TrueUφÞ, and always (□φ ≡¬◊¬φ). We define a
symbolic state as the set of all propositions that are currently
True and denote all possible symbolic states by VAP ¼ 2AP.
We use AP0 ¼ fπ 0 j π 2APg as the set of primed versions
of the variables in AP to denote variables at the next time
step. The set of all possible symbolic states at the next time
step is VAP0 ¼ 2AP0

.

Figure 1. Example demonstrating the symbol generation process. (a) Two skills a1 and a2 and their precondition and effect sets. (b,
c) The grounding sets of the symbols generated from skill a1. The robot needs to consider the value of both x1 and x2 when
deciding if it can apply a1, so pre � mask(a1) = {True, True}. The robot only needs to consider the value of x1 when deciding if it
can apply a2, so pre � mask(a2) = {True, False}. The application of a1 either changes x1 and x2 or only x1, so eff � mask1(a1)
= {True, True} and eff � mask2(a1) = {True, False}. In effect 1 of a1, σTrueef f 1ða1Þ ¼ fσa1, 1, x1, σa1, 1, x2g become True and σFalse

ef f 1ða1Þ ¼fσa1, 2, x1, σa2, 1, x1, σa2, 1, x2g become False. In effect 2 of a1, σTrueef f 2ða1Þ ¼ fσa1, 2, x1g becomes True, σFalse
ef f 2ða1Þ ¼ fσa1, 1, x1, σa2, 1, x1g becomes

False, and σstay
ef f 2ða1Þ ¼ fσa1, 1, x2, σa2, 1, x2g do not change. Figure from Pacheck et al. (2019).

266 The International Journal of Robotics Research 42(4-5)

The semantics of an LTL formula φ are defined over an
infinite sequence w = w1w2… (Pnueli 1977). Each wi

corresponds to the set of π that are True at step i. We denote
that a sequencew satisfies an LTL formula at instance i byw,
i ⊧ φ. Intuitively,w, i ⊧sφ if φ is True at step i + 1,w, i ⊧ □φ if
φ holds at every step after and including i in w, and w, i ⊧ ◊φ
if φ holds at some step on or after i in w.

We consider the GR(1) fragment of LTL (Bloem et al.,
2012). Let AP ¼ E[S ¼ Σ[R[S be the set of atomic
propositions, where E ¼ Σ[R is the learned symbols Σ and
additional user-defined symbols R (which correspond to
uncontrolled signals that a user requires the robot to respond
to), and S refers to the activation of robot skillsA (i.e., when
a2S is True, a2A is executed). The state of the world is
represented by the truth values of the propositions in E. In
GR(1), formulas are of the form:

φ ¼ φe → φs

φe ¼ φe
i⋀φ

e
t⋀φ

e
g

φs ¼ φs
i⋀φ

s
t⋀φ

s
g

(1)

where φe are assumptions about the environment’s behavior
and φs are guarantees for the robot, also referred to as the
system, and:

· φei and φsi are predicates over E and E[S, respectively,
characterizing the initial states.

· φet and φst are safety constraints of the form ⋀i□ψi where
ψi are over v and su where v2E[S for φet and φst , and
u2E for φet and u2E[S for φst .

· φeg and φ
s
g are the liveness requirements and characterize

events that should occur infinitely often. Here, φeg ¼
⋀m
i¼1□àJ ei and φsg ¼ ⋀n

j¼1□àJ sj where J ei and J sj are
predicates over E[S.

An implementation of the specification is guaranteed to
satisfy φs, provided that the environment satisfies φe.

3.4. Synthesis

We use GR(1) synthesis (Bloem et al., 2012) to find a
strategy to accomplish a task. In this work, a task consists
of a set of system liveness guarantees ðφsgÞ, initial con-
ditions ðφei⋀φsi Þ, and a set of “hard” system safety
guarantees ðφst, hardÞ. When synthesizing, we solve a two-
player game played between a system and its environment
where the system reacts to the environment. The envi-
ronment is considered to be adversarial and attempts to
keep the system from accomplishing its task. This ensures
that the system is able to accomplish its task regardless of
what happens in the environment. We define a game
structure G ¼ ðAP, E,S, θinit, τe, τs, τhards ,ΦÞwhereAP, E,
and S are as defined in Section 3.3. We define θinit as the
set of states that satisfy φei⋀φ

s
i. We define τe4VAP ×VE0 as

the set of current and next states satisfying φet ,
τs4VAP ×VAP0 as the set of current and next states
satisfying φst , and τhards 4VAP ×VAP0 as the set of current

and next states satisfying the hard system constraints in
φst, hard. Hard system constraints in τhards cannot be modified
by the synthesis-based repair process in Section 6.2. Note
that in Bloem et al. (2012), τe and τs are defined as logical
formulas; here, we define them as sets of states. The
winning condition is given by Φ ¼ φeg → φsg.

Given a game structure G, the realizability problem is to
decide if the game is winning for the system; either (a) for
every environment action, the system is able to achieve φs or
(b) the system is able to falsify φe. To determine if a speci-
fication is realizable, we find via a fixed point computation all
the states Z from which the system is able to win (Bloem et al.,
2012). We iterate through every system liveness guarantee, J sj ,
and determine the set of states the system can always either
transition to the next liveness goal from or falsify φe. The
synthesis problem is to compute a strategy for the system to
make the specification realizable (Bloem et al., 2012).

We define a strategy computed using the synthesis
process as C ¼ ðE,S,Q,Q0, δ,LÞ, where:

· E and S are the environment and system propositions,
respectively, defined above

· Q is a set of states
· Q0 4 Q is the set of initial states
· δ :Q × 2E →Q is the transition function
· L :Q→ 2E × 2S is a labeling function that returns the

propositions in E[S that are True in state q 2 Q

Here, δ depends on E as the system reacts to the envi-
ronment state.

If equation (1) is unrealizable, meaning that there does
not exist a strategy C that will satisfy the task, the synthesis
algorithm can provide a counter-strategy that represents the
behavior of the environment that will cause the system to
fail to accomplish its task (Könighofer et al., 2009;
Chatterjee et al., 2008). We define a counter-strategy as
Cc:s: ¼ ðE,S,Q,Q0,Qn:o:t, δc:s:,Lt,Ln:o:tÞ, where E,S,Q,Q0

are the same as in C and:

· Qn.o.t 4 Q is the set of states from which there are no
outgoing transitions (n.o.t.)

· δc:s: :Q∖Qn:o:t × 2E →Q is the transition function
· Lt :Q∖Qn:o:t → 2E × 2S is the labeling function for states

with outgoing transitions
· Ln:o:t :Qn:o:t → 2E is the labeling function for states with

no outgoing transitions. The system has no valid tran-
sitions from Qn.o.t, so only E is needed to label Qn.o.t.

In Section 6.1, we use the states with no outgoing
transitions, Qn.o.t, to narrow the search for skills to repair
unrealizable specifications in the enumeration-based repair
approach.

4. Problem formulation

Our goal is to automatically encode the capabilities of a
robot in an LTL formula and find a strategy for a reactive

Pacheck et al. 267

high-level task. If no strategy can be found, we find ad-
ditional skills or modifications to skills that would allow the
robot to complete the given task.

Problem 1. Given a set of skills A, automatically ab-
stract and encode the capabilities of the robot in an LTL
formula, φskills. Allow a user to specify a reactive high-level
task and find a strategy to fulfill it.

Problem 2. Given an unrealizable specification φunreal,
find skill suggestions Anew, in the form of additional
skills or modifications to current skills, such that con-
structing φskills withA[Anew makes the specification φunreal
realizable.

5. Specification encoding

To address Problem 1, we automatically encode the
robot’s capabilities in φskills using the symbols in Σ,
which are learned from low-level sensor information
(Konidaris et al., 2018), and the skillsA of the robot. The
skills-based specification, φskills, can be reused for dif-
ferent tasks performed by the same robot. The user then
writes the task-specific specification, φtask, over AP,
which is combined through conjunction with φskills to
create φfull. We use a synthesis tool, such as Slugs
(Ehlers and Raman 2016), to either find a strategy, C, for
accomplishing φfull if the specification is realizable or a
counter-strategy, Cc.s., if the specification is unrealiz-
able. An overview of the framework is depicted in
Figure 2.

5.1. Skills-based specification (φskills)

The skills-based specification encodes the preconditions
and postconditions of skills, along with mutual exclusion
constraints on the skills and symbols.

Given a set of skills A, we first create symbols σ 2 Σ,
representing the effects of a2A (Konidaris et al., 2018). We
slightly abuse notation and use a as a proposition that is True
when the skill a is active, and False otherwise.

The skills-based specification (φskills) is composed of the
system safety ðφst, skills ¼ φst, pre⋀φ

s
t, mx skillsÞ and environment

safety ðφet, skills ¼ φet, ef f⋀φ
e
t, no act⋀φ

e
t, mx symsÞ specifications.

The system safety specification includes constraints on
when the system is allowed to perform skills ðφst, preÞ and
optionally the mutual exclusion of skills ðφst, mx skillsÞ. The
environment safety specification includes how each σ is
allowed to change with the application of a skill ðφet, ef f Þ, the
effect of no skill being performed ðφet, no actÞ, and the mutual
exclusion of symbols over the same factor ðφet, mx symsÞ.

5.1.1. System safety ðφst, skillsÞ. We encode constraints onwhen
skills can be performed in φst, pre based on the preconditions of
the skills. For each action, we find all possible combinations of
symbols that overlap with the precondition mask and determine
which combinations fall within the precondition set (Konidaris

et al., 2018). Note that there may be multiple combinations
of symbols from which the robot is allowed to execute a skill.
We define σpreðaÞ ¼ fσp2Σpre�maskðaÞjGðσpÞ4PreðaÞg, where
Σpre�maskðaÞ ¼ ∏2Fs:t:"xi2f , pre�maskðaÞ½a�ðiÞ¼TrueΣf . The set
σpre(a) contains all the combinations of σ that satisfy the pre-
condition of a. We encode in φst, pre that when none of the
preconditions in the set σpre(a) are satisfied, the robot is not
allowed to perform a as shown in equation (2). Equation (2)
states that skill a cannot be executed at the next step when no
combinations of symbols σp 2 σpre(a) are True at the next step.
This allows the robot to choose to execute a skill only when the
preconditions of a skill are satisfied, essentially encoding “do not
use the skill unless a precondition is met.” This is in contrast to
encoding “if the precondition is true then execute the skill”
which requires the robot to use a skill when it is available, even if
the skill is not needed or it may lead to undesired behavior. We
write φst, pre over VAP0 instead of over VAP as in Pacheck et al.
(2019) to generate additional types of skill suggestions in
Section 6.2 and match assumptions made in Pacheck et al.
(2020). In Figure 1, σpreðaÞ½a2� ¼ ffσa1, 1, x1g, fσa1, 2, x1gg.
Following φst, pre, this means that when both fσa1, 1, x1g and
fσa1, 2, x1g are False, the robot cannot choose to execute skill a2.
Or, equivalently, when either fσa1, 1, x1g or fσa1, 2, x1g are True,
a2 can be executed.

We can encode mutual exclusion of skills in φst, mx skills at
both the current and next step. In the examples presented,
skills are mutually exclusive, although in general they need
not be.

Note that φst, mx skills is considered a “hard” constraint
ðφst, hardÞ for synthesis-based repair (Section 6.2) and so is
not allowed to be changed. On the other hand, φst, pre is not a
“hard” constraint and can be modified during synthesis-
based repair, meaning that we can modify the preconditions
of the skills.

5.1.2. Environment safety ðφet, skillsÞ. To encode a skill’s
(possibly nondeterministic) effects, we consider the skill
outcome to be determined by the environment.

We denote the symbols which become True with
the application of a skill a as σTrue

ef f jðaÞ ¼[f s:t:"xi2f , ef f�maskjðaÞðiÞ¼True σa, j, f (Konidaris et al.,
2018). In Figure 1, σTrue

ef f 2ða1Þ ¼ fσa1, 2, x1g.
When a is applied, symbols belonging to the same factor

f whose grounding sets do not overlap with those in σTrue
ef f jðaÞ

become False due to mutual exclusion. We denote this set of
symbols σFalse

ef f jðaÞ in equation (3). In Figure 1, σFalse
ef f 2ða1Þ ¼fσa1, 1, x1, σa2, 1, x1g. The physical interpretation of the set of

symbols that become False is that the robot in the not in the
union of those symbols. In effect 2 of a2, the robot is not in
the union of Gðσa1, 1, x1Þ and Gðσa2, 1, x1Þ.

When performing synthesis (Kress-Gazit et al., 2018), if
a symbol is not constrained, it can be set to any value. We
must therefore consider the “frame problem” (Ghallab et al.,
2004) and constrain symbols that are not modified by the
current skill to stay the same. The set σstay

ef f jðaÞ ¼
[f s:t:"xi2f , ef f�maskjðaÞðiÞ¼FalseΣf contains the σ not modified

268 The International Journal of Robotics Research 42(4-5)

by skill a in the jth outcome. In Figure 1, because x2 is not
modified in effect 2 of a1, σ

stay
ef f 2ða1Þ ¼ fσa1, 1, x2, σa2, 1, x2g.

For example, after applying skill a1 when
fσa2, 1, x1, σa2, 1, x2g are True, one possible outcome is that
σTrue
ef f 2ða1Þ ¼ fσa1, 2, x1g become True, σFalse

ef f 2ða1Þ ¼ fσa1, 1, x1,
σa2, 1, x1g become False, and the robot is now in the state
where fσa1, 2, x1, σa2, 1, x2g are True and the rest of the symbols
False. The physical interpretation is that the robot in the
intersection of Gðσa1, 2, x1Þ and Gðσa2, 1, x2Þ.

φs
t, pre ¼ ⋀

a2A
□
h
¬
�

⋁
σp2σpreðaÞ

�
⋀

σ2σp
sσ

��
→ ¬sa

i
(2)

σFalseef f jðaÞ

¼ [
f s:t:"xi2f , ef f�maskjðaÞðiÞ¼True

�
σ 2Σf

�� GðσÞ\G�σa, j, f � ¼ ˘
�

(3)

φe
t, ef f ¼ ⋀

a2A
□

h
a→ ⋁

j2f1,…, kðaÞg

��
⋀

σ2σTrue
ef f jðaÞ

sσ
�

⋀
�

⋀
σ2σFalse

ef f jðaÞ

¬sσ
�
⋀
�

⋀
σ2σstay

ef f jðaÞ

ðσ↔sσÞ
��i

(4)

We encode how the truth values for σ can change when a
skill is applied in φet, ef f in equation (4). Equation (4) states
that when skill a is performed, it leads to one of j nonde-
terministic outcomes with σ 2 σTrue

ef f jðaÞ becoming True,
σ 2 σFalse

ef f jðaÞ becoming False, and the truth value of σ 2 σstay
ef f jðaÞ

remaining the same. Symbols whose grounding sets overlap
with those in σTrue

ef f jðaÞ and are therefore not in σ
True
ef f jðaÞ, σ

False

ef f jðaÞ ,
or σstay

ef f jðaÞ are not constrained. In the examples presented in
this work, there are no symbols whose grounding sets
overlap that have not been merged into one symbol. During
the synthesis process, the adversarial environment chooses
which nondeterministic outcome j would result in the worst
case scenario for the system. This enables us to guarantee

that no matter what the nondeterministic effect of an action
is, the system is still able to complete its task.

When no skill is performed, we encode in φet, no act that
the truth values of σ remain the same.

φe
t, no act ¼ □

	

⋀
a2A

¬a

�
→ ð⋀σ2Σðσ↔sσÞÞ

�
(5)

We encode the mutual exclusion of non-overlapping
symbols over the same factor in φet, mx syms at both the
current and next step. We enforce that only one of the
symbols in a factor is True at a time. In Figure 1, σa1, 1, x1,
σa1, 2, x1, and σa2, 1, x1 are all grounded over x1 and do not
overlap, so only one of them can be True at any time.

5.2. Task specification, synthesis, and execution

The user writes the task-specific specification, φtask, which
may include additional environment propositions vu 2R.
The task-specific specification can include constraints on
the initial state(s) of the system and environment, system
liveness, and environment liveness in φsi, task, φ

e
i, task, φ

s
g, task,

and φeg, task, respectively. Additional system safety con-
straints are added in φst, task, which we consider to be a “hard”
constraint and which is not allowed to be changed during the
synthesis-based repair. Tasks can encode objectives such as
repeatedly accomplishing a goal or goals, always avoiding
some states, always making sure a constraint holds, or
reacting to environment events. We give examples of tasks
and φst, task, φ

e
g, task, and φst, task in Section 7.

The full specification φfull is shown in equation (6). We
generate a strategy for satisfying φfull using a synthesis tool,
such as Slugs (Ehlers and Raman 2016). If φfull is realizable,
the resulting strategy C ¼ ðE,S,Q,Q0, δ, LÞ, where
E ¼ Σ[R and S ¼ A, is used to control the robot. If φfull is
not realizable, we repair the specification using either an
enumeration-based or synthesis-based repair approach
(Section 6).

Figure 2. Framework for automatically encoding robot capabilities, executing tasks, and repairing unrealizable tasks. Novel
contributions are in bold and red. Figure adapted from Pacheck et al. (2019).

Pacheck et al. 269

6. Specification repair

We address Problem 2 of making an unrealizable specifi-
cation realizable by searching for additional skills or
modifications to existing skills. We present and compare
both an enumeration-based and synthesis-based approach,
based on methods first proposed in Pacheck et al. (2019) and
Pacheck et al. (2020), respectively.

6.1. Enumeration-based repair

In the enumeration-based repair approach, we search for one
or more skills, anew 2Anew, that would make an unrealizable
task realizable when φskills is constructed withA[Anew. We
build on the enumeration-based repair process presented in
Pacheck et al. (2019). There, we assume that only one skill,
anew is required to repair the specification. In this work, we
relax that assumption and repair specifications that may
need more than one additional skill. We assume the robot
has all the symbols it needs to define the task. We also
assume that our new skills will consist of a precondition set
and effect mask we have already seen, restricting the search
space for the new skills. By assuming our new skills will
consist of a precondition set and effect mask we have al-
ready seen, we will not find all possible skills to repair the
task and may even be unable to repair the specification. It is
possible to relax these assumptions to consider all possible
preconditions and postconditions; however, without these
assumptions, the number of possible skills is too large to
reasonably consider. In this work, we are able to find skill
suggestions for all examples in Section 7 with the
enumeration-based approach while making the above
assumptions.

We leverage the structure of Cc.s. to focus the repair
process. The counter-strategy, Cc.s., contains the environ-
ment behaviors that make a specification unrealizable. In
general, a GR(1) specification is unrealizable either because
(i) the robot violates safety constraints, (ii) gets stuck in a
loop when trying to satisfy its liveness goals, or (iii) is
unable to reach the liveness goals from its initial conditions.
When the robot can only satisfy at least one of its liveness
goals by using skills that leave the environment unable to
act, the counter-strategy contains states with no successors
(i.e., Qn.o.t. ≠ ˘). We find the skills that lead to these states,
and use their precondition sets to narrow the search space
for Anew. Then, we generate new effect sets, based on
existing effect masks, and combine them with existing
precondition sets to create new skills.

Algorithm 1 shows our enumeration-based procedure for
repairing unrealizable specifications. On Line 1, we create

new effect sets, Σ+, based on existing effect masks, based on
the assumption that new skills will change similar states as
current skills. For each existing effect mask, we find all the
state variables that are in the mask. We then compute all
possible combinations of σa,j,f that ground to those state
variables, regardless of which skill they were originally
generated from.

On Line 2, we find An:o:t:: the set of skills whose pre-
conditions were satisfied that lead to states with no outgoing
transitions. Based on An:o:t:, we then construct a set of
candidate skills, Acandidate�skills�n:o:t on Line 3. Each one
consists of the precondition set of a skill inAn:o:t: and a new
effect set found in Σ+. We then construct a second set of new
skills,Acandidate�skills�all, in Line 4 based on the precondition
sets of all skills A. Slightly abusing notation, we denote
candidate skills in Acandidate�skills�n:o:t and Acandidate�skills�all

as pairs containing the preconditions of a skill and which
symbols become True, while using the name of a skill to
denote skills in An:o:t.

We then consider combinations of a skill in
Acandidate�skills�n:o:t and nnew-skills-desired � 1 skills in
Acandidate�skills�all. We assume that one new skill needs to
include a precondition from the skills An:o:t:, but do not
assume any other new skills need to start from one such
precondition. In Lines 5–13, we write the unrealizable
specification with the new skills and attempt to synthesize a
strategy. If the specification is realizable, we store the skill
combination. All Anew which make φfull realizable are re-
turned to the user, enabling them to select the skill they
deem easiest to physically implement.

6.2. Synthesis-based repair

Our second approach to repair unrealizable specification is
synthesis-based repair where, as opposed to the enumeration-
based approach, we take advantage of the synthesis process
to guide the repair. We extend the synthesis-based repair
introduced in Pacheck et al. (2020) to find suggestions for
skills that can repair reactive tasks. Here, we give an over-
view of the process (see Pacheck et al. (2020) for a full
description), and describe modifications we have made to the
repair process that allow us to find suggestions for a larger
class of specifications. With these modifications we are able
to find repair suggestions for specifications with reactive
liveness guarantees, which is not possible with the repair
process in Pacheck et al. (2020).

The repair process takes an unrealizable specification
and finds suggestions of new skills or modifications to
existing skills. Modifications to existing skills are in the
form of additional preconditions that should be added to

φfull ¼ φe
i, task⋀φe

t, ef f ⋀φ
e
t, no act⋀φ

e
t, mx syms

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{φe
t, skills

⋀φe
g, task → φs

i, task⋀φs
t, pre⋀φ

s
t, mx skills⋀φ

s
t, task|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

φs
t, hard

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{φs
t, skills

⋀φs
g, task (6)

270 The International Journal of Robotics Research 42(4-5)

skills, thereby allowing the robot to use them in additional
situations, or postconditions that should be removed from
skills, essentially reducing nondeterminism. Additional
preconditions are a set of symbol combinations σaddedpreðaÞ that
should be added to the existing preconditions, that is,
σnewpreðaÞ ¼ σpreðaÞ[σaddedpreðaÞ. The repair process can also remove
one or more postconditions j 2 {1, …, k(a)}.

To find new skills, we add a set of additional skills,
Aextra�skills, to the specification that are unrestricted—they
can be executed from any combination of symbols and can
result in any combination of symbols. The preconditions of
aextra�skill 2Aextra�skills are σpreðaÞ½aextra�skill� ¼ 2Σ. In prac-
tice, we simply do not include constraints on the precon-
ditions of Aextra�skills in φst, skills. Similarly, there are no
constraints on the postconditions of aextra�skill 2Aextra�skills.
The extra skills still need to satisfy constraints on the mutual
exclusion of symbols in φet, mx syms. New skills are of the
form of a set of preconditions, σnewpreðaÞ and collection of
postconditions for that skill σTrue�new

ef f jðaÞ .
To find skill suggestions, the synthesis-based repair

process performs synthesis until it determines the specifi-
cation is unrealizable. The repair process then iteratively
modifies τe and τs, which correspond to φet, skills and φst, skills,
respectively, and attempts to perform synthesis until the
specification is realizable. The repair process returns τnewe
and τnews , from which we extract the skill suggestions.

To modify τe, the process of restricting postconditions
takes the current game structure G, a set of winning states Z,

the user-defined variables R, the set of extra skills
Aextra�skills, and which extra skill can be changed on this
iteration aextra-skill-modify. The process of restricting the
postconditions removes transitions from τe as shown in
Algorithm 2. We start with the current set of winning states
Z and attempt to expand it. In Line 1, we find R1, the set of
states from which the system has the ability to reach Z.
Then, in Line 1, we find R2, the set of states from which at
least one next state will be in R1. This set includes states
where one nondeterministic action outcome may reach R1

(and can therefore reach Z) but another may not. We then
remove already winning states from R2 in Line 1. In
Pacheck et al. (2020), we find τnewe by removing all the
postconditions associated with R2 that do not result in R1 in
Line 1 (skipping Line 1). We then return τnewe and τolde (the
transitions that were not modified).

In Pacheck et al. (2020), the repair process can remove
any transition, while running restrictPostconditions, in order
to attempt to repair the specification. In the case of reactive
specifications, this can result in unwanted behavior. The
process of restricting postconditions is able to remove
transitions that correspond to changes in the values of
vu 2R, as symbols in bothR and Σ are treated the same. As
a result, the synthesis-based repair process proposed in
(Pacheck et al., 2020) may offer suggestions for skills that
can change (or keep the same) the value of symbols vu 2R.
We show an example of this in the Baxter Plates example in
Section 7.

Pacheck et al. 271

In this work, we modify Algorithm 2 to repair reactive
specifications. Modifications to the algorithm are shown in
blue. We add Lines 1 and 1 to Algorithm 2. We do not
allow the repair process to change the value of symbols
vu 2R. The modifications in τnewe found in Line 1 may
include restrictions on the truth value of vu 2R. Since we
do not want to allow such modifications, for each possible
modification in τnewe , we add transitions corresponding to
all possible changes in the truth value of vu 2R in Line 1.
Now, the environment is able to make transitions with no
restriction on vu 2R, while still having restrictions on σ 2
Σ. The addition of Line 1 does not allow us to find any
suggestions for some specifications. As we show in
Section 7, for some specifications, the only way for the
synthesis-based repair process to find suggestions is by
changing the values of variables vu 2R, essentially trying
to enforce the behavior of external events, which is not
desired.

For some specifications, multiple skills are required to find
suggestions. To account for this, we only allow the repair
process to change one additional skill aextra�skill�modify 2
Aextra�skills per iteration in (Line 1).Without Line 1, the repair
process attempts to change all of the extra skills to the same
postconditions at once, which can cause the repair process to
fail.

Additionally, we only perform one iteration of the while
loop in Algorithm 2: Repair in Pacheck et al. (2020). In the
previous work, we modified τs and τe, then applied the
controllable predecessor operator to Zwith the new τs and τe
until the current liveness guarantee overlapped with Z.
However, because we are making modifications but not
allowing the user-defined variables to be restricted, the
process of restricting the postconditions may expand Z in
ways not captured by only the application of the controllable
predecessor. The new skills may allow for the system to
have more control over the outcome of skills at other states
not currently in Z. By performing synthesis after only one
iteration of the repair process, we are able to find sugges-
tions for more specifications.

We find τnews by relaxing the preconditions as in Pacheck
et al. (2020). The process is similar to restricting the
postconditions. We find all the states from which the system
can reach Z without violating τhards . We then find the states
that will always lead to these states from which the system
can reach Z. We add these states τs and thereby expand the
preconditions.

After finding τnewe and τnews that allow the specification to
be synthesized, the repair process finds a strategy for the
system to achieve the liveness guarantees from the initial
conditions. We then compare the preconditions and post-
conditions of the skills performed during the strategy to the
preconditions and postconditions of the skills initially given
to the robot. The new postconditions for the extra skills are
then those seen in the strategy. The new preconditions for
the extra skills are those seen in the strategy. Similarly, the
additional preconditions for extra skills are those seen in the
strategy (Pacheck et al., 2020).

To find multiple suggestions, once one suggestion has
been found by the synthesis-based repair process, the new
skills making up the suggestion are automatically dis-
allowed along with any additional preconditions without
any user input. A new strategy is found if possible and
another suggestion extracted. We continue finding addi-
tional suggestions and disallowing previous suggestions
until there are no more suggestions (Pacheck et al., 2020).
All suggestions found by the synthesis-based repair process
are then returned to the user who can choose which sug-
gestion to implement.

7. Robot demonstrations

We demonstrate automatically creating φskills, writing and
executing task specifications, and the repair process with
examples involving a Kinova robot manipulating vials and a
Baxter robot manipulating blocks and pushing plates. The
Baxter Blocks example shows skills with nondeterminism
and several unrealizable specifications. The Baxter Plates
example shows the use of raw camera images to create
symbols and the benefit of enumeration-based repair over
synthesis-based repair. The Kinova Vials example shows
the benefits of the synthesis-based repair over the
enumeration-based repair.

7.1. Environment setup

We have three different demonstration environments.
Baxter Blocks: In the Baxter Blocks example, a

Baxter robot is manipulating blocks on a table as shown
in Figure 3(a) and (b). There are three blocks: red, blue
and green (also labeled 1, 2, and 3, respectively). The
red and blue blocks can be placed at locations A, D and
E, and can also be stacked at AT. The green block can
be placed at locations B, C, F, and G. The location of
the blocks are determined by AprilTags (Wang and
Olson 2016) detected by the Baxter’s wrist cameras.
The state space is the x, y, and z position of each of the
blocks.

Baxter Plates: The Baxter Plates example contains a
Baxter robot manipulating plates on a table as shown in
Figure 3(c) and (d). There are two plates (a blue square plate
and a green oval plate) that can be moved between the clean,
set, and dirty regions. The state in this example is the image
recorded by the USB camera shown in the right of
Figure 3(d). Symbols are generated using a lower dimen-
sional state space found using independent component
analysis (Hyvärinen and Oja 2000) as detailed in Section
7.3.

Kinova Vials: The Kinova Vials example deals with a
Kinova arm moving three colored vials (green, red and
yellow) as shown in Figure 3(e) and (f). The vials can be in
six regions: top-left, top-right, rack-left, rack-right, right-
top, and right-bottom. There can only be one vial in each
region at a time. The position of the vials is determined by a
motion capture system using structures placed on top of the

272 The International Journal of Robotics Research 42(4-5)

vials as shown in Figure 3(f). The state is the x and y location
of all of the vials.

7.2. Skills

The robots are given a set of executable skills.
Baxter Blocks: The skills for the Baxter Blocks example

are implemented as controllers that move the arm of the
Baxter over the position of the block as determined by the
AprilTags (Wang and Olson 2016) attached to each block.
The skill then lifts up the block and moves it to over the
destination location. Finally, the skill lowers the block and
releases it.

The left arm of the Baxter moves the red and blue
blocks while the right arm moves the green block. The
skills allow the robot to move the red and blue blocks

from D and E to A and AT (and vice-versa). Another skill
attempts to move the green block from F to C, but due to C
being elevated, the skill sometimes results in the block
ending in G. Similarly, the skill from G to C sometimes
results in the green block ending in C and sometimes in G.
Finally, there are skills that move the green block reliably
from C to B and B to F. Figure 3(a) shows the skills
available to the Baxter where skills with dashed lines
have nondeterministic outcomes.

Baxter Plates: In the Baxter plates example, there are six
skills that involve reproducing a trajectory demonstrated to
the robot to move the green and blue plates from clean to set,
set to dirty, and dirty to clean. Skills require the plate to be in
the named initial location in order to be executed (e.g., the
blue plate must be clean in order for ablue�clean�to�set to be
executed). Some skills have additional restrictions on when

Figure 3. Baxter Blocks: (a) The arrows show the skills given to the Baxter robot to move blocks between lettered locations. Dashed
arrows represent skills with nondeterministic outcomes. Note that one skill takes blocks from A and AT to D and another from A and
AT to E while all the other skills have preconditions that are only one location. (b) Initial setup of the Baxter Blocks example. Baxter
Plates: (c) The colored arrows represent the skills given to the Baxter robot to move the two plates between the clean, set, and dirty
locations. The skill moving the green (oval) plate from clean to set is not possible when the blue (square) plate is set and the skill
moving the green plate from dirty to clean is not possible when the blue plate is dirty or clean. The skill moving the blue plate from set to
dirty is not possible when the green plate is set. (d) Initial setup of the Baxter Plates example. Kinova Vials: (e) The arrows represent the
skills given to the Kinova robot to move the vials. The skills move the green, red, and yellow vials between the top-left, top-right, rack-
left, rack-right, right-top, and right-bottom locations. The skills move the vials between the yellow (top and right) and white (rack)
holders (and vice-versa) but not between the two yellow holders. (f) Initial setup of the Kinova Vials example. (a) and (b) are from
Pacheck et al. (2019).

Pacheck et al. 273

they can be executed—the skill agreen�clean�to�set cannot be
executed when the blue plate is in set, agreen�dirty�to�clean

cannot be executed when the blue plate is dirty or clean, and
ablue�set�to�dirty cannot be executed when the green plate is
in set. Figure 3(c) shows the skills available to the Baxter
and the approximate paths the plates follow between
locations.

Kinova Vials: The skills in the Kinova Vials example
allow the robot to move the vials between the yellow
outer racks and the white rack (and vice-versa), but not
between the two yellow racks. For each skill, the arm
moves between predetermined waypoints to move above
the initial location, move down, grasp the vial, move up,
move to above the destination location, move down,
release the vial into the rack, move up, and then move
back to a home position shown in Figure 3(f). Figure 3(e)
shows the skills available to the Kinova arm; note that all
the arrows are bi-directional.

7.3. Symbol generation

We collected data to automatically generate symbols
and encode the skills into an LTL formula for each
example.

During the data collection process, the robot ran-
domly executes a valid skill. A user-defined oracle tells
the robot which skills can be executed based on the
locations of the blocks, plates, or vials, and the robot
randomly executes one of those skills. In the Baxter
Blocks and Plates examples, the oracle determines which
skills can be executed based on the AprilTags (Wang and
Olson 2016) data, while the Kinova Vials example uses
motion capture data. The oracle is created by the user
when the skills are initially given to the robot and is only
used during data collection for symbol generation. For
example, in the Baxter Plates example, when the
AprilTag on the blue plate is greater than 0.68 m from the
center of the Baxter (in the set region) and the AprilTag
on the green plate is less than 0.4 m from the Baxter (in
either the dirty or clean region), the oracle determines the
skill ablue�set�to�dirty can be executed. Note that while
the oracle in the Baxter Plates example uses AprilTags
(Wang and Olson 2016) to determine which skills can be
executed, the symbol generation process uses only raw
camera images. For each example, we collected multiple
precondition-skill-postcondition sets of data, along with
which actions could be executed at each precondition.
Table 1 lists the number of skills and data collected for
each of the three examples.

Baxter Blocks: After collecting the data, we generated
symbols and partitioned the skills for each of the ex-
amples (Konidaris et al., 2018). As shown in Table 1, we
generated 19 symbols and 20 partitioned skills for the
Baxter Blocks example. The symbol generation process
partitioned the skills that could move either the blue or
red block from E or D to A or AT (and vice-versa) into two

skills each. The symbols generated refer to the x, y, or z
position for each of the blocks. Figure 4(a) shows the
approximate grounding of the propositions, grouped by
the block they correspond to.

Baxter Plates: For the Baxter Plates example, we
generated symbols directly from images taken by an
external stationary USB camera, as shown in Figure 3(d).
To generate the symbols, we first resize the images to
120 × 72, convert them to grayscale and then apply in-
dependent component analysis (Hyvärinen and Oja
2000), keeping the top 5 components. The symbol
generation process is then applied to these lower di-
mensional vectors—preconditions are estimated using a
support vector machine (C = 2, γ = 4) (Cortes and Vapnik
1995), while effects are modeled using a kernel density
estimator (Rosenblatt 1956; Parzen 1962) with a
Gaussian kernel and bandwidth determined by 3-fold
cross validation. This procedure generates 5 factors
and 9 symbols, where each symbol is a subset of the low-
dimensional representation of an image. Figure 4(b)
shows each of the symbols.

Kinova Vials: In the Kinova Vials example, we gen-
erated 18 symbols and 48 partitioned skills. Each symbol
corresponds to a vial being located in a different region.
Figure 4(c) shows the approximate grounding of each of
the symbols, grouped by the color vial they correspond to.
Due to the nature of the state space and skills, the symbol
generation process factored the state space such that each
symbol is over both the x and y position of a vial, as
opposed to only the x or y position, as in the Baxter
Blocks example. Each skill in the Kinova Vials example
changes both the x and y position of a vial; in the Baxter
Blocks example the x, y, and z position of blocks do not
always change together.

7.4. Skills-based specification

We automatically encode the symbols and skills in φskills for
each example. We show selected parts from the specifica-
tion for each example.

Baxter Blocks: In the Baxter Blocks example, we au-
tomatically encoded the symbols {σ0,…, σ18}2 Σ and skills
faf�to�c,…, ad�to�at�2g2A in φskills. In equation (7), we
show part of the system safety formula φst, skills. We show part
of the environment safety formula φet, ef f in equations (8) and
(9). Figure 5(a)–(d) visualizes the result of applying skills
ae�to�a�2 and af�to�c.

The precondition requirements of ac�to�b are encoded in
φst, skills in equation (7).

□ð¬sσ1 →¬sac�to�bÞ (7)

□ðae�to�a�2→ðsðσ3⋀σ4Þ⋀sð¬σ11⋀¬σ13Þ
⋀

σ2σstay
ef f1ðae�to�a�2Þ

ðσ↔sσÞÞÞ (8)

274 The International Journal of Robotics Research 42(4-5)

□
�
af�to�c →

��
sσ0⋀s¬σ17 ⋀

σ2σstay
ef f1ðaf�to�cÞ

ðσ↔sσÞ�⋁
�
sðσ0⋀σ1⋀σ2Þ⋀sð¬σ15⋀¬σ17⋀¬σ16⋀¬σ18Þ

⋀
σ2σstay

ef f2ðaf�to�cÞ
ðσ↔sσÞ���

(9)

□ð¬sðσ6⋀σ3Þ→¬sablue�clean�to�setÞ (10)

□
�
ablue�clean�to�set →

�
sσ5⋀s¬σ3 ⋀

σ2σstay
ef f1ðablue�clean�to�setÞ

ðσ↔sσÞ��
(11)

Based on the data the robot has seen, it determines that it
only needs to consider the value of y3 in deciding if skill

ac�to�b can be performed. There is only one symbol falling
inside the precondition set so σpreðaÞ½ac�to�b� ¼ ffσ1gg.
Therefore, equation (7) states that if σ1 is not True, that is,
block 3 is not at approximately y = �0.3 m, skill ac�to�b

cannot be applied.
The part of φet, skills pertaining to the effect of skill

ae�to�a�2 is shown in equation (8) where
σstay
ef f 1ðae�to�a�2Þ ¼ fσ0, σ1, σ2, σ5,…, σ10, σ12, σ14,…, σ18g.

This corresponds to block 2 moving from location E to A
and blocks 1 and 3 not moving. A potential outcome of
applying skill ae�to�a�2 is visualized in Figure 5(b).

The part of φet, skills referring to the nondeterministic
effects of skill af�to�c is shown in equation (9) where

σstay
ef f 1ðaf�to�cÞ ¼ fσ1,…, σ16, σ18g and σstay

ef f 2ðaf�to�cÞ ¼
fσ3,…, σ14g. Equation (9) encodes that when skill
af�to�c is applied, either σ0 becomes True and σ17 be-

comes False with symbols in σstay
ef f 1ðaf�to�cÞ not changing

(block 3 ends in G), or σ0, σ1, and σ2 become True and
σ15, σ17, σ16, and σ18 become False with symbols in

σstay
ef f 2ðaf�to�cÞ not changing (block 3 ends in C). This is

visualized in Figure 5(c) and (d).
Baxter Plates: In the Baxter Plates example, the symbols

correspond to images and the combination of symbols can
be visualized together. For example, Figure 6 illustrates the
preconditions and effects when the agent executes
ablue�clean�to�set. The precondition requirements of

ablue�clean�to�set are encoded in φst, skills in equation (10).
The postconditions of ablue�clean�to�set are encoded in
φet, skills as shown in equation (11) where σ

stay
ef f 1ðablue�clean�to�setÞ ¼fσ0, σ1, σ2, σ4, σ6, σ7, σ8g.

Kinova Vials: For the Kinova Vials example, we encode the
preconditions and postconditions of the skills tomove the vials in
φskills. We show part of the specification involving
agreen�right�bottom�to�rack�left. The preconditions of

Table 1. Overview of the different robot demonstration environments. For each demonstration environment, we gave the robot a set of
skills, collected data on the preconditions and postconditions, generated symbols, and automatically encoded the preconditions and
postconditions in an LTL formula. Partitioned skills are those that have different effects from different preconditions. The number of
formulas in φskills include constraints on the preconditions, postconditions, mutual exclusion of skills, and mutual exclusion of symbols.

Number of given
skills

Number of
partitioned skills

Number of symbols
generated (|Σ|)

Number of pre/post pairs
collected (|D|)

Number of formulas
in φskills

Baxter Blocks 9 20 19 1052 83
Baxter Plates 6 7 9 100 35
Kinova Vials 48 48 18 860 195

□ð¬sððσ7⋀σ0⋀σ13Þ⋁ðσ7⋀σ0⋀σ14Þ⋁ðσ7⋀σ0⋀σ15Þ⋁ðσ7⋀σ0⋀σ17Þ⋁
ðσ8⋀σ0⋀σ13Þ⋁ðσ8⋀σ0⋀σ15Þ⋁ðσ9⋀σ0⋀σ13Þ⋁ðσ9⋀σ0⋀σ14Þ⋁
ðσ9⋀σ0⋀σ15Þ⋁ðσ9⋀σ0⋀σ17Þ⋁ðσ11⋀σ0⋀σ14Þ⋁ðσ11⋀σ0⋀σ15ÞÞ→
¬sagreen�right�bottom�to�rack�left

� (12)

□
�
agreen�right�bottom�to�rack�left→�

sσ4⋀sð¬σ0⋀¬σ1⋀¬σ2⋀¬σ3⋀¬σ5Þ ⋀
σ2σstay

ef f1ðagreen�right�bottom�to�rack�leftÞ
ðσ↔sσÞ� (13)

Pacheck et al. 275

agreen�right�bottom�to�rack�left are combinations of different lo-
cations of the red and yellow vials when the green vial is in right-
bottom and the rack-left location is clear as shown in equation
(12). For all of the Kinova Vials skills, the skills could have up to
16 preconditions, as the precondition classifier does not nec-
essarily learn that the vials not beingmoved in the skill cannot be
in the same physical location. In this example, there are only 12

preconditions, with one (σ7 ⋀ σ0 ⋀ σ13) having both the red and
yellow vials at the right-top location.

The postconditions of agreen�right�bottom�to�rack�left are
that the green vial is in the rack-left location and not in the
right-bottom location while the position of the red and
yellow vials are unchanged as shown in equation (13) where
σstay
ef f 1ðagreen�right�bottom�to�rack�leftÞ ¼ fσ6, σ7,…, σ16, σ17g.

Figure 5. Visualization of symbol combinations (a) σ9 ⋀ σ7 ⋀ σ10 ⋀ σ11 ⋀ σ13 ⋀ σ12 ⋀ σ17 ⋀ σ18 ⋀ σ16, (b) σ9 ⋀ σ7 ⋀ σ10 ⋀ σ3 ⋀ σ4 ⋀ σ12 ⋀

σ17 ⋀ σ18 ⋀ σ16, (c) σ9 ⋀ σ7 ⋀ σ10 ⋀ σ3 ⋀ σ4 ⋀ σ12 ⋀ σ0 ⋀ σ1 ⋀ σ2, (d) σ9 ⋀ σ7 ⋀ σ10 ⋀ σ3 ⋀ σ4 ⋀ σ12 ⋀ σ0 ⋀ σ18 ⋀ σ
16. All other symbols were False. Ten samples were drawn from the intersection of the grounding sets of each symbol combination.
Possible transitions are shown between the subfigures, corresponding to transitions in equations (8) and (9). Applying skill ae�to�a�2 to
(a) results in (b). Applying skill af�to�c in (b) results in (c) or (d). Examples of symbol groundings are shown in (e) and (f) as black lines.
The raw data is shown in green and the Gaussian fit to it in red. Figure adapted from Pacheck et al. (2019).

Figure 4. The approximate grounding of the symbols for the Baxter Blocks, Baxter Plates, and Kinova Vials examples. (a) For the Baxter
Blocks, each symbols grounds to one dimension of the state space. (b) For the Baxter Plates, each symbol corresponds to a lower
dimensional representation of the raw image. (c) For the Kinova Vials, each symbol grounds to two dimensions of the state space.

276 The International Journal of Robotics Research 42(4-5)

7.5. Realizable base task specifications

We introduce additional environment variables vu 2R that
the user controls. Using R, we write reactive tasks. We
describe the user-defined task for each example and show
parts of the specification in this section. We show the full
φskills for each example in Appendix A.

Baxter Blocks: For the Baxter Blocks example, we in-
troduce an additional environment variable R ¼ fSwitchg.
The task liveness specifications are shown in Figure 7.
When Switch = True, the red block (block 1) should
eventually be in A, the blue block (block 2) in AT, and the
green block (block 3) in F as shown in Figure 7(a)–(c) and
encoded in the LTL formula above the subfigures. When
Switch = False, the red block (block 1) should be in AT, the
blue block (block 2) in A, and the green block (block 3) in C
as shown in Figure 7(d)–(f) and encoded in the LTL formula
above the subfigures.

We include a fairness assumption on the environment
that the green block (block 3) will eventually be placed in
location C when ag�to�c is applied, as shown in equation
(14). Without this, the specification is unrealizable because
in the worst case, skill ag�to�c always results in the green
block (block 3) ending in G.

φe
g, task ¼ □à

�
ag�to�c → ðσ0⋀σ1⋀σ2Þ

�
(14)

Baxter Plates: For the Baxter Plates example, we in-
troduce two additional user-defined variables
R ¼ fBluePerson,GreenPersong. The task liveness spec-
ification is to set the blue plate when BluePerson = True, set

the green plate when GreenPerson = True, make sure the
blue plate is not in set when BluePerson = False, and the
green plate is not in set when GreenPerson = False, as
shown and encoded in Figure 8(a)–(d), respectively. Note
that in the Baxter Plates example, we need to specify the
location of both plates in the liveness guarantees due to the
entanglement of the symbols.

The symbol generation process was not able to fully
determine the effects of two of the skills, due to the lossy
nature of the compressed state representation. The symbol
generation process learns that for the skills
agreen�clean�to�set and ablue�clean�to�set, a possible outcome
is that no plates move. We add a fairness assumption that the
skills should always eventually succeed in moving the
plates shown in equation (15).

□à
�
agreen�clean�to�set → σ8

�
⋀

□àðablue�clean�to�set → σ5Þ (15)

Kinova Vials: For the Kinova Vials example, we in-
troduce the additional environment variable
R ¼ fReactg. The task is to arrange the vials in one
configuration when React = True and another when
React = False. When React = True, the Kinova should
arrange the vials such that the green vial is in the right-
bottom position, the red vial is in the top-left position, and
the yellow vial is in the top-right position (Figure 9(a) and
(b)). When React = False, the Kinova should arrange the
vials such that the green vial is in the top-left position, the
red vial is in the right-bottom position, and the yellow vial
is in the right-top position. The LTL formula encoding the

Figure 6. Symbolic representation of the precondition and effect for ablue�clean�to�set. The outcome of the action is computed by
adding the positive effect to the precondition, and then removing the negative one. Since our representation is factorized, the
preconditions and effects depend only on a subset of the factors that constitute the symbolic state space. In this case, σ3 and σ5 both refer
to the same factor, while σ6 refers to a different factor. The location of the plates is entangled in the individual symbols, so we need to view
combinations of symbols to know the location of the plates. In general, the darker a plate is at a location, the more it needs to be there for
the precondition or result. The lighter gray versions of plates represent the skill not being dependent on that plate location or not affecting
that plate. The precondition for the skill represents states where the blue plate is in the clean position and the green plate is elsewhere. This
is shown by the intersection of σ6 and σ3 showing the blue square plate located in the top-right (clean) position being very dark. The
green oval plate can be located in any of its three positions as it shows up in all of those positions. The effect of the skill is that the blue
plate is now in the clean position; the green plate remains unaffected. This is shown by the location of the blue square plate in the bottom
right (set) position being very dark and the green oval plate being very light in all locations. Note that the raw images were greyscaled
during the symbol generation process.

Pacheck et al. 277

https://journals.sagepub.com/doi/suppl/10.1177/02783649231167207

task liveness specification is shown above the visual
interpretation of the task in Figure 9.

We add an additional constraint to φst, task that the red and
green vials should never be in the same yellow rack as
shown in equation (16) and Figure 16(a), (b), (d) and (e).

φs
t, task ¼ □¬ðσ0⋀σ7Þ⋀□¬ðσ1⋀σ6Þ⋀

□¬ðσ2⋀σ9Þ⋀□¬ðσ3⋀σ8Þ⋀
□¬sðσ0⋀σ7Þ⋀□¬sðσ1⋀σ6Þ⋀
□¬sðσ2⋀σ9Þ⋀□¬sðσ3⋀σ8Þ

(16)

7.6. Synthesis and execution

For each example, we are able to find a strategy to fulfill
the original task. Throughout this paper, computation

times refer to running Slugs (Ehlers and Raman 2016) and
our algorithms on an Ubuntu 18.04 machine with 12 GB
RAM. For the Baxter Blocks example, we synthesize C
with 256 states in 1 s. For the Baxter Plates example, it
took 1 s to synthesize C with 124 states. The strategy for
the Kinova Vials example took 22 s to synthesize and had
232 states.

We demonstrate the strategy for the Baxter Blocks ex-
ample.We controlled the value of Switch2R through a user
interface. We sampled the current state x 2 X to find out
which symbols were True. A symbol σa, j, fq was True if the
state was in the grounding set for the symbol, Gðσa, j, fqÞ. All
other symbols were False. We show an example execution
of C for the Baxter Blocks example in Figure 10. We show
an example sequence of states in C for the Baxter Plates
example in Figure 11.

Figure 7. In the Baxter Blocks example, the robot reacts to the value of Switch2R. When Switch = True, the robot needs to stack the
blue block on the red block in location A and the green block in location F. When Switch = False, the robot needs to stack the red block
on the blue block in location A and the green block in location C. Figure from Pacheck et al. (2019).

Figure 8. In the Baxter Plates example, (a) when BluePerson = True the blue plate should be set, (b) whenGreenPerson = True the green
plate should be set, (c) when BluePerson = False the blue plate should not be set, and (d) when GreenPerson = False the green plate
should not be set. The left column of each subfigure shows the physical interpretation of the liveness guarantee and the right column
shows the corresponding image generated based on the symbols.

278 The International Journal of Robotics Research 42(4-5)

7.7. Repair of unrealizable tasks
We demonstrate the repair process by finding skill suggestions
for six unrealizable specifications. For each example, we made
the specification unrealizable by either adding additional task
constraints to φst, task or modifying φst, skills. Each unrealizable
specification shows different aspects of the repair process.

For the Baxter Blocks example, we investigate four
unrealizable specifications. In two specifications, we add
constraints to avoid a skill or set of states. In these two
specifications, we find An:o:t ≠˘, allowing us to narrow the
search space for new skills to those with the same pre-
conditions as a2An:o:t. For two other specifications, we
modify the skills available to the robot and find An:o:t ¼ ˘,
requiring us to perform an exhaustive search for new skills
over all current preconditions sets.

For the Baxter Plates and Kinova Vials examples, we
investigate one unrealizable specification each. In the
Baxter Plates example, we add a reactive task constraint and
show the benefits of the enumeration-based repair approach
over the synthesis-based approach. In the Kinova Vials
example, we add a constraint to avoid certain states and

show the benefits of the synthesis-based repair approach
over the enumeration-based approach. For these unrealiz-
able specifications, we findAn:o:t ≠˘. The Baxter Plates and
Kinova Vials examples both required two skills to repair,
which increased the complexity of the repair process.

We describe the constraints added to each example that
make the specifications unrealizable in this section and
show selected formula. We show the full unrealizable task
specifications, φskills, in Appendix A.

We give an overview of the number of solutions and time
taken to find those solutions in Table 2.

Baxter Blocks: The two Baxter Blocks unrealizable
specifications for which we can narrow the search space of
possible skills have the same φskills and φtask as in Sections
7.4 and 7.5, with the addition of φst, task, as shown in
Figure 12 and described below. For each specification, we
add the constraint that only one block can move at a time as
shown in Appendix A.1.

Unrealizable Specification 1: In Figure 12(a), we show
the added constraint that the green block (block 3) never be
in location B, φst, task ¼ □¬ðσ0⋀σ15Þ⋀□¬sðσ0⋀σ15Þ. This

Figure 9. In the Kinova Vials example, the robot reacts the truth value of React 2R. When React = True, the red vial should be in
the top-left location, the yellow vial in the top-right location, and the green vial in the right-bottom location. When React = False,
the red vial should be in the right-bottom location, the yellow vial in the right-top location, and the green vial in the top-left
location.

Figure 10. The Baxter robot executing a strategy to fulfill the desired liveness guarantees in Figure 7 without any additional user
provided constraints. The value of Switch was controlled through a user interface. Time progresses from A to F. Figure adapted from
Pacheck et al. (2019).

Pacheck et al. 279

https://journals.sagepub.com/doi/suppl/10.1177/02783649231167207
https://journals.sagepub.com/doi/suppl/10.1177/02783649231167207

type of scenario could occur if there was an obstacle in
location B.

Unrealizable Specification 2: In Figure 12(b), we show
the added constraint that the robot never use skill ac�to�b,
φst, task ¼ □¬ac�to�b⋀□¬sac�to�b. This type of scenario
could occur if a motor enabling skill ac�to�b was damaged
and the skill could not be performed.

Unrealizable Specifications 1 and 2 Repair: For both
Unrealizable Specifications 1 and 2, the enumeration-based
repair process found An:o:t ¼ fac�to�bg, corresponding to
the precondition that the green block (block 3) be in location
C. We only searched for one additional skill, so we did not
need to find combinations of skills in Line 5 of Algorithm 1.
The repair process searched through 62 skills to find six skill

suggestions for Unrealizable Specification 1 and three skill
suggestions for Unrealizable Specification 2 in 2.7 min and
2.9 min, respectively. The user needs to determine which
suggestion to implement. Some suggestions were not
physically possible, making them impossible to implement,
such as a suggestion with σpreðanewÞ ¼ ffσ1gg and
σTrue
effðanewÞ ¼ fσ17, σ1, σ16g, corresponding to moving the

green block (block 3) to the x position of location F and the y
and z position of location C, which would leave the block
floating in the air. If desired, the user could add additional
constraints to the specification to remove the physically
impossible suggestions. One skill suggestion for both
Unrealizable Specifications 1 and 2, with σpreðaÞ½anew� ¼
ffσ1gg and σTrue

effðanewÞ ¼ fσ17, σ18, σ16g, corresponding to

Figure 11. Sequence of states needed to achieve the liveness guarantees in Figure 8 for the Baxter Plates example. The strategy gives
skills that react to the truth value of BluePerson andGreenPerson. We show the physical and symbolic interpretation of each state. The
upper image of each pair is the visualization of the symbolic state, created by combining the symbols that are True. The lower image of
each pair is the physical state. Above each pair of images, we show which symbols are True, which action should be taken, and the truth
value of BluePerson and GreenPerson.

280 The International Journal of Robotics Research 42(4-5)

moving the green block (block 3) from location C to F, is
physically possible. When this skill is added to Unrealizable
Specifications 1 and 2, the task is realizable.

The synthesis-based repair process found 50 suggestions
in 70 s for Unrealizable Specification 1 and 36 suggestions
in 47 s for Unrealizable Specification 2. Figure 13 shows
selected suggestions to repair Unrealizable Specifications 1
and 2. The repair suggestions for Unrealizable Specifica-
tions 1 and 2 involve adding one or more new skills or
relaxing the preconditions.

The synthesis-based repair process produces suggestions
that exploit all possible preconditions of the existing skills.
Suggestion 1 proposes 3 skills to repair Unrealizable
Specification 1. For all of the skills in Suggestion 1, the red
block (block 1) is in location D and blue block (block 2) is in
location A. Each row in Figure 13(a) shows one skill. The
first skill moves the green block (block 3) from location G to
either floating above a new location with the x position of F
and the y position of C (Postcondition 1), a new location
with the x position of F and the y position of C (Post-
condition 2), F (Postcondition 3), or D (Postcondition 4).
The other two skills move the green block (block 3) from on
the table in location C or stacked in location C.

Only Postcondition 3 was seen during the original
symbol learning. However, the synthesis-based repair
process exploits the existing preconditions and post-
conditions of other skills when it creates or modifies skills,
enabling the robot to create behaviors not observed before.

The remainder of the suggestions to repair Unrealizable
Specification 1 involving adding new skills are similar to
Suggestion 1, with multiple skills that move the green block
(block 3) to different locations that may not be physically
possible, but still fall in the precondition of skill af�to�c. The
other suggestions have different configurations of the red
and blue blocks (blocks 1 and 2). Since we do not add
constraints that different blocks cannot be in the same
physical position or floating in the air, some suggestions
may be physically impossible. Suggestion 2 for Unrealiz-
able Specification 1 in Figure 13(b) shows a suggestion with
the blue block (block 2) in location E, but with a z value that
is above the table.

The synthesis-based repair process generates similar
suggestions for Unrealizable Specification 2. Suggestion 1
proposes two skills to make the specification realizable. One
skill moves the green block (block 3) from location G to
either location B, E, or F. The other skill moves the green
block (block 3) from location C to either location B, E, or F.

The suggestions that relax the preconditions of the skills
for Unrealizable Specification 1 and 2 are physically im-
possible. These involve adding preconditions that allow for
blocks to be floating in the air or at the same location as
other blocks, which is not possible. We show examples of
preconditions being relaxed in the Kinova Vials Unrealiz-
able Specification 6. If desired, additional constraints could
be added to the specification to generate suggestions
without these physically impossible suggestions.

Table 2. Overview of the repair suggestions found. The synthesis-based repair approach takes substantially less time than the
enumeration-based repair approach. For the Kinova Vials example, we were not able to run the enumeration-based repair approach until
completion; the numbers listed are for stopping the repair process midway.

Enumeration-based Synthesis-based

Unrealizable spec Number of suggestions Time (sec) Number of suggestions Time (sec)

Baxter Blocks 1 6 163.2 50 70
2 3 171.6 36 47
3 68 6420 32 49
4 17 2868 35 32

Baxter Plates 5 9 1214 1 1.1
Kinova Vials 6 22 25167 25 381

Figure 12. (a) The added constraint in Unrealizable Specification 1 that the green block (block 3) should never be in location B. (b) The
added constraint in Unrealizable Specification 2 that the skill c-to-b should never be executed. (c) A skill moving the green block (block
3) from location C to location F makes both Unrealizable Specification 1 and 2 (and 3 and 4) realizable. Figure from Pacheck et al.
(2019).

Pacheck et al. 281

Unrealizable Specifications 3 and 4 involved modifying
the base specification.

Unrealizable Specification 3: We removed skill ac�to�b

from A before writing the specification, using the same set
of symbols Σ as in Section 7.3. The user-defined task was
the same as in Figure 7.

Unrealizable Specification 4: We removed all data per-
taining to skill ac�to�b before the symbol generation process.
This resulted in a different set of symbols, Σ. The user-
defined task was the same as represented in Figure 7. There
were no longer symbols corresponding to the green block
(block 3) being in location B, as symbols are only generated
from effect sets, so the subscripts of the symbols in the
liveness guarantees shown in Figure 7 were different.

Unrealizable Specification 3 and 4 Repair: For both
Unrealizable Specification 3 and 4, the enumeration-based
repair process found An:o:t ¼ ˘, requiring an exhaustive
search of the skill space. For Unrealizable Specification 3,
the repair process searched through 1172 skills and found 68
possible new skills in 107 min. For Unrealizable Specifi-
cation 4, the repair process searched through 788 skills and
found 17 possible skills to repair the specification in 48 min.
The repair process suggested a skill that would move the
green block (block 3) from both locations C and G to lo-
cation F for both specifications. With the fairness as-
sumption in equation (14), this has the same result as giving
the robot a skill moving the green block (block 3) from C to

F. When we added a skill that moved the green block (block
3) from C to F, both specifications were realizable.

The synthesis-based repair found 32 suggestions to re-
pair Unrealizable Specification 3 in 49 s and 35 suggestions
to repair Unrealizable Specification 4 in 32 s. Figure 14
shows selected suggestions from the synthesis-based repair
process to repair Unrealizable Specifications 3 and 4.

We show one suggestion to repair Unrealizable Speci-
fication 3 in Figure 14(a). This suggestion is similar to those
for Unrealizable Specifications 1 and 2. The repair process
suggests two new skills that move the green block (block 3),
one that has a precondition of location C and one that has a
precondition of location G. Both skills have postconditions
that move to either location B, E, or F. The remainder of the
suggestions to repair Unrealizable Specification 3 are
similar but have different configurations of the red and blue
blocks (blocks 1 and 2). Again, the suggestions involving
relaxing the preconditions are physically impossible.

One of the suggestions to repair Unrealizable Specifi-
cation 4 is shown in Figure 14(b). This suggestion proposed
two skills to move the green block (block 3) to location F
from either C or G. Note that since we removed data to
generate Unrealizable Specification 4, there is only a
symbol pertaining to the green block (block 3) being ele-
vated off the table.

Baxter Plates: For the Baxter Plates example, we in-
vestigate one unrealizable specification.

Figure 13. Selected suggestions from the synthesis-based repair process for Unrealizable Specifications 1 and 2. (a) Suggestion 1 for
Unrealizable Specification 1 proposes three skills with nondeterministic postconditions. (b) Suggestion 2 for Unrealizable
Specification 1 proposes three skills. These skills have the precondition and postcondition that block 2 is hovering over location E. This is
physically impossible, but the specification does not disallow it. (c) Suggestion 1 for Unrealizable Specification 2 proposes two skills with
nondeterministic postconditions.

282 The International Journal of Robotics Research 42(4-5)

Unrealizable Specification 5: The user-defined liveness
guarantees are the same as in Figure 8. We add the addi-
tional constraints that the when either BluePerson or
GreenPerson is True, the same colored plate should not be
moved out of the set position. This is encoded in φst, task as
shown in Figure 15(a).

Unrealizable Specification 5 Repair: The enumeration-
based repair process found An:o:t ≠˘. We considered repair
suggestions that consisted of two additional skills. The
repair process searched through 3840 potential new skills
and found 9 suggestions in 20.23 min. We show one of the
suggestions in Figure 15(b). The first skill has the pre-
condition σ5 and postcondition σ8. When this skill is exe-
cuted in the repaired strategy, this corresponds to the blue
plate moving from set to dirty when the green plate is set.
The second skill has the precondition σ8 and postconditions
σ3 ⋀ σ4. This corresponds to moving the green plate from
clean to set when the blue plate is set.

The synthesis-based repair process found 1 suggestion in
1.1 s. This suggestion is to reduce the nondeterminism in
skill agreen�clean�to�set such that it does nothing. This
suggestion is valid symbolically because it works to violate
the liveness assumption that the skill □◊(agreen�clean�to�set

→ σ8).
We investigated if the synthesis-based repair would find

suggestions for repair if the symbol generation process was
able to determine the skill symbolic structure correctly. We
modified the learned skills to remove the nondeterminism,
removing the option for skills agreen�clean�to�set and
ablue�clean�to�set to not change any environment variables.

The synthesis-based repair was unable to find any
other suggestions for repair. During the synthesis-based
repair process, Algorithm 2, restrictPostconditions, finds

the required postconditions for new skills. The algorithm
takes the current set of winning states, Z; the post-
conditions of new skills need to be in Z. As found by the
enumeration-based repair, we need two new skills: one
with postconditions σ0 ⋀ σ2 ⋀ σ5 ⋀ σ6 ⋀ σ8 and one with
postconditions σ0 ⋀ σ2 ⋀ σ3 ⋀ σ4 ⋀ σ8. However, during
the synthesis process, all states with either postcondition
are removed from Z before the repair process is started.
As a result, we are unable to find a suggestion with the
synthesis-based repair process.

When we use the synthesis-based repair as proposed in
Pacheck et al. (2020) without modification, we are able to
find suggestions to repair the specification. However, these
suggestions only contain skills which change the truth value
of the user-defined variables BluePerson and GreenPerson,
which is not desired. Essentially, they let the robot do its task
by enforcing restrictions on how the people are behaving.
One such suggestion modifies the skills such that when the
green plate and blue plate are both clean, if BluePerson =
True, it must be False at the next step if agreen�clean�to�set is
not executed to make sure the green plate could be set if
needed. The suggestion also includes extra skills that en-
force when the green plate and blue plate are both set and
BluePerson = False and GreenPerson = True, GreenPerson
must become False so the robot can move the green plate,
enabling it to then move the blue plate.

Kinova Vials: For the Kinova Vials example, we in-
vestigate one unrealizable specification.

Unrealizable Specification 6: The user-defined task was
the same as in Figure 9. We added the constraint that the red
and green vials should never be in the same rack (either
white or yellow) at the same time. The additional constraint
in φst, task that the red and green vials not be in the white rack

Figure 14. Selected suggestions from the synthesis-based repair process for Unrealizable Specifications 3 and 4. (a) Two additional skills
to move block 3 that have nondeterministic postconditions of locations B, E, and F. One skill starts from location C and one from
location G. (b) One suggestion to repair Unrealizable Specification 4 involves two new skills. One moves block 3 from location G to F
and the other moves block 3 from location C to F.

Pacheck et al. 283

at the same time is encoded in equation (17) and the physical
interpretation is shown in Figure 16(c) and (f). The physical
interpretation that the red and green vials not be in the same
yellow rack is shown in Figure 16(a), (b), (d) and (e).

□¬ðσ4⋀σ11Þ⋀□¬ðσ5⋀σ10Þ
□¬sðσ4⋀σ11Þ⋀□¬sðσ5⋀σ10Þ (17)

We also add the constraint to φst, task that two vials cannot
be in the same physical location at the same time. We show a
portion of this constraint in equation (18) and the full
constraint in Appendix A.3.

□¬ðσ0⋀σ6Þ⋀□¬ðσ0⋀σ12Þ⋀□¬ðσ1⋀σ7Þ⋀… (18)

Additionally, we add that only one vial can be moved at
a time. We show the constraint that if the red vial moves,
the green and yellow vials cannot move in equation (19).
The constraints for the green and yellow vials are similar
and we show them in Appendix A.3. Without these ad-
ditional constraints, the suggestions returned are difficult
to interpret and are unusable because the suggestions
involve moving multiple vials at once, which a single arm
cannot do.

Unrealizable Specification 6 Repair: For the enumeration-
based repair, we found thatAn:o:t ≠˘. However, at least two
skills are required to repair the specification. This necessitates
looping through combinations of the skills inAn:o:t and the 48
other partitioned skills. We stopped the repair process after
7 h and found 22 suggestions. One of the suggestions was a
skill to move the green vial from the right-bottom location to
the top-left location and another skill to move the green vial
from the top-left location to the right-bottom location.
Figure 16(g) shows this suggestion.

The synthesis-based repair process returns 25 suggestions
in 381 s. This is orders of magnitude faster than the
enumeration-based repair process. One of the suggestions is
shown in Figure 16(h). The suggestion proposes three new

skills: one with preconditions σ0 ⋀ σ10 ⋀ σ15 and post-
condition σ2 ⋀ σ10 ⋀ σ15, one with preconditions σ4 ⋀ σ8 ⋀

σ15 and postconditions (σ4 ⋀ σ6 ⋀ σ15) ⋁ (σ4 ⋀ σ7 ⋀ σ15), and
one with preconditions σ4 ⋀ σ7 ⋀ σ15 and postcondition σ4 ⋀

σ8 ⋀ σ15. Note that the synthesis-based repair suggestion
contains three skills, even though the specification could be
repaired with two, while the enumeration-based repair only
contains two skills. This is because the synthesis-based repair
has no restrictions on how many skills it can propose and

Figure 15. (a) The added constraint in Unrealizable Specification 5 for the Baxter Plates example. When BluePerson is True at both the
current and next step and the blue plate is set, the blue plate should be set at the next step. Similarly, when GreenPerson is True at both
the current and next step and the green plate is set, the green plate should be set at the next step. (b) One of the 9 suggestions found by the
enumeration-based repair process. The suggestion proposes two new skills. The first skill moves the blue plate from set to dirty when the
green plate is set. The second skill moves the green plate from clean to set when the blue plate is set. (c) The synthesis-based repair
process finds one suggestion to repair the specification. This suggestion proposes modifying the skill agreen�clean�to�set such that it does
nothing to violate the added environment liveness assumption.

ððσ6↔¬sσ6Þ⋁ðσ7↔¬sσ7Þ⋁ðσ8↔¬sσ8Þ⋁ðσ9↔¬sσ9Þ⋁ðσ10↔¬sσ10Þ⋁ðσ11↔¬sσ11ÞÞ→
ððσ0↔sσ0Þ⋀ðσ1↔sσ1Þ⋀ðσ2↔sσ2Þ⋀ðσ3↔sσ3Þ⋀ðσ4↔sσ4Þ⋀ðσ5↔sσ5ÞÞ⋀
ððσ12↔sσ12Þ⋀ðσ13↔sσ13Þ⋀ðσ14↔sσ14Þ⋀ðσ15↔sσ15Þ⋀ðσ16↔sσ16Þ⋀ðσ17↔sσ17ÞÞ

(19)

284 The International Journal of Robotics Research 42(4-5)

https://journals.sagepub.com/doi/suppl/10.1177/02783649231167207
https://journals.sagepub.com/doi/suppl/10.1177/02783649231167207

does not attempt to minimize the number of skills suggested.
The enumeration-based repair would consider two skills to
repair a specification before considering three, as it would add
substantial computation expense.

The synthesis-based repair process also produces sug-
gestions that relax the preconditions of skills. We show one

such suggestion in Figure 16(i). The suggestion suggests
relaxing the preconditions of ared�rack�left�to�top�left to in-
clude states when the red vial is in the right-bottom location,
the green vial is in the rack-left, and the yellow vial is in the
rack-right or top-right locations. It also suggests allowing
ayellow�rack�left�to�top�right to be allowed when the yellow vial

Figure 16. (a–f) Images showing the configurations of the red and green vials that should not occur based on the task specification. In the
suggestion plots, the red vials are denoted by red triangles, the green vials by green squares, and the yellow vials by yellow circles. (g)
One suggestion given by enumeration-based repair. There are two skills suggested. Note that some of the vials in the preconditions
overlap because the preconditions are taken from existing skills. When determining which symbols are contained in the precondition
classifier, we do not enforce mutual exclusion of the symbols in the same physical space. Even though these preconditions would
violate the mutual exclusion of symbols added in φtask, these states are never visited, so the specification is not violated. (h) Suggestion
from the synthesis-based repair. There are three skills suggested. (i) A suggestion from the synthesis-based repair process to relax the
preconditions. The repair process suggests relaxing the preconditions of four skills.

Pacheck et al. 285

is in the right-top location, the red vial is in the right-bottom
location, and the green vial is in the rack-left location. The
third precondition it suggests relaxing is that for
ared�rack�left�to�right�bottom to include the state when the red
vial is in the top-left location, the yellow vial is in the rack-
right or right-top locations, and the green vial is in the rack-left
location. It also suggests allowing ayellow�rack�left�to�right�top

to be executed when the yellow vial is in the top-left location,
the red vial is in the top-left location, and the green vial is in the
rack-left location. Note that skills involvingmoving the yellow
vial are not strictly necessary to repair the specification, but are
included due to the choices made by the synthesis-based repair
process when extracting a strategy.

7.8. Enumeration-based versus
synthesis-based repair

Both the enumeration-based and synthesis-based repair are
able to find symbolic suggestions for skills to repair un-
realizable tasks. The quality and speed of the enumeration-
based and synthesis-based suggestions differ depending on
the task and current skills available to the robot.

Table 2 shows the synthesis-based repair is faster than the
enumeration-based repair, especially as the number of skills and
symbols increases. The difference in time to find suggestions
was especially apparent in the Kinova Vials example, where we
were not able to run the enumeration-based repair to completion.
This disparity is pronounced because the enumeration-based
repair needs to enumerate all possible combinations of skills,
which does not scalewell when there aremultiple skills required
to repair a specification. It is possible to terminate both repair
processes early and only receive a portion of the suggestions;
however, it is not possible to know at which point in the repair
process the suggestion desired by the user will be found.

While the enumeration-based repair takes longer than the
synthesis-based repair, the suggestions returned tend to be
more interpretable due to both the number and type of skills
suggested. The enumeration-based repair attempts to find
skills that have the preconditions of existing skills and the
effect masks of existing skills. As a result, the suggested
skills will look similar to the existing skills. The synthesis-
based repair process suggests skills with postconditions and
preconditions that do not necessarily resemble the existing
skills. There is no limit on the number of skills provided by
the synthesis-based repair process in a single suggestion,
which can make suggestions more difficult to interpret. For
example, in the suggestion shown in Figure 16, the
synthesis-based repair process suggests 3 skills, while the
enumeration-based repair process only suggests 2 skills. For
the synthesis-based repair process, the skills that are sug-
gested are highly dependent on the choices the system
makes during the process of finding a strategy. Changing the
order of states visited by the system during the determi-
nization process will likely result in different suggestions.

The synthesis-based repair does not always find sug-
gestions to repair the specification. As shown in Section 7

with the Baxter Plates example, there are certain specifi-
cations for which the only way the synthesis-based repair
can provide suggestions is by suggesting skills that control
the value of user-defined variables, essentially enforcing a
behavior for uncontrolled events.

8. Conclusion

In this work, we present a framework for automatically
encoding the skills of a robot in an LTL formula from sensor
data. We provide a task to the robot and generate a strategy
to accomplish the task if possible. If the task is not possible,
we show two methods to repair the specifications by pro-
viding skill suggestions that would make the task possible.
We demonstrate the process of encoding the skills in an LTL
formula, an enumeration-based repair process, and a
synthesis-based repair process on three examples.

We plan to extend this work in the future. Currently, our
approach does not consider the state during skill execution.
We plan to extend the synthesis-based repair process to
address this limitation by allowing specifications with con-
straints on what occurs during skill execution. Additionally,
we plan to handle a larger class of specifications, such as those
in the Baxter Plates example. This work requires the user to
implement the suggestions by hand. Future work will consist
of automatically implementing controllers based on the
symbolic suggestions, further reducing the burden on the
user. Lastly, we plan to demonstrate the scalability of our
algorithm on larger and more complicated specifications.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work is supported by the Office of Naval Research award N00014-
17-1-2699.

ORCID iDs

Adam Pacheck https://orcid.org/0000-0002-4349-1888
Steven James https://orcid.org/0000-0003-4366-4125

Supplemental Material

Supplemental material for this article is available online.

Note

1. Note that σ are only generated from effect sets in Konidaris et al.
(2018).

References

Ahmetoglu A, Seker M, Sayin A, et al. (2020) DeepSym: deep
symbol generation and rule learning from unsupervised

286 The International Journal of Robotics Research 42(4-5)

https://orcid.org/0000-0002-4349-1888
https://orcid.org/0000-0002-4349-1888
https://orcid.org/0000-0003-4366-4125
https://orcid.org/0000-0003-4366-4125

continuous robot interaction for planning. ArXiv preprint
arXiv:2012.02532.

Alur R, Moarref S and Topcu U (2013) Counter-strategy guided
refinement of gr (1) temporal logic specifications. In: Formal
methods in computer-aided design, Portland, OR, 20–23
October 2013, pp. 26–33. IEEE.

Ames B, Thackston A and Konidaris G (2018) Learning symbolic
representations for planning with parameterized skills. In:
IEEE/RSJ international conference on intelligent robots and
systems, Madrid, Spain, 01–05 October 2018, pp. 526–533.
IEEE.

Asai M (2021) Unsupervised grounding of plannable first-order
logic representation from images. Proceedings of the Inter-
national Conference on Automated Planning and Scheduling
29: 583–591.

Asai M and Fukunaga A (2018) Classical planning in deep
latent space: bridging the subsymbolic-symbolic boundary
Proceedings of the AAAI Conference on Artificial Intel-
ligence 32.

Bloem R, Jobstmann B, Piterman N, et al. (2012) Synthesis of
reactive (1) designs. Journal of Computer and System Sci-
ences 78(3): 911–938.

Chatterjee K, Henzinger TA and Jobstmann B (2008) Environment
assumptions for synthesis. International Conference on
Concurrency Theory. Berlin, Germany: Springer, 147–161.

Cortes C and Vapnik V (1995) Support-vector networks. Machine
Learning 20(3): 273–297.

Dantam NT, Kingston ZK, Chaudhuri S, et al. (2018) An incre-
mental constraint-based framework for task and motion
planning. The International Journal of Robotics Research
37(10): 1134–1151. DOI: 10.1177/0278364918761570

DeCastro JA and Kress-Gazit H (2016) Nonlinear controller
synthesis and automatic workspace partitioning for reactive
high-level behaviors. In: International conference on hybrid
systems: computation and control, Pittsburgh, PA, April
2016, 225–234. ACM.

Ehlers R and Raman V (2016) Slugs: extensible gr (1) synthesis.
International Conference on Computer Aided Verification.
Berlin, Germany: Springer, 333–339.

Ester M, Kriegel HP, Sander J, et al. (1996) A density-based al-
gorithm for discovering clusters in large spatial databases
with noise. In: Proceedings of the second international
conference on knowledge discovery and data mining,
KDD’96, 2–4 August 1996, Portland, Oregon, pp. 226–231.
AAAI Press.

Fainekos GE (2011) Revising temporal logic specifications for
motion planning. In: International conference on robotics and
automation, 09–13 May 2011, Shanghai, China, pp. 40–45.
IEEE.

Fikes RE and Nilsson NJ (1971) Strips: a new approach to the
application of theorem proving to problem solving. Artificial
Intelligence 2(3–4): 189–208.

Finucane C, Jing G and Kress-Gazit H (2010) Ltlmop: ex-
perimenting with language, temporal logic and robot control.
In: IEEE/RSJ international conference on intelligent robots
and systems, 18–22 October 2010, Taipei, Taiwan,
pp. 1988–1993.

Fox M and Long D (2003) Pddl2. 1: an extension to pddl for
expressing temporal planning domains. Journal of Artificial
Intelligence Research 20: 61–124.

Garrett CR, Chitnis R, Holladay R, et al. (2021) Integrated task and
motion planning. Annual Review of Control, Robotics, and
Autonomous Systems 4: 265–293.

Ghallab M, Nau D and Traverso P (2004) Automated Planning:
Theory and Practice. Amsterdam, Netherlands: Elsevier.

Ghallab M, Nau D and Traverso P (2016) Automated Planning and
Acting. Cambridge, UK: Cambridge University Press.

He K, Lahijanian M, Kavraki LE, et al. (2019) Automated ab-
straction of manipulation domains for cost-based reactive
synthesis. IEEE Robotics and Automation Letters 4: 285–292.

He K, Wells A, Kavraki LE, et al. (2019) Efficient symbolic re-
active synthesis for finite-horizon tasks. In: International
conference on robotics and automation, Montreal, QC, 20–24
May 2019, pp. 8993–8999. IEEE.

Hollander M, Wolfe DA and Chicken E (2014) Nonparametric
Statistical Methods. 3rd edition. New York, NY: John Wiley
& Sons, Inc.

Hyvärinen A and Oja E (2000) Independent component analysis:
algorithms and applications. Neural Networks: The Official
Journal of the International Neural Network Society 13(4–5):
411–430.

James S, Rosman B and Konidaris G (2020) Learning portable
representations for high-level planning. In: International
conference on machine learning, Baltimore, MD, 23–29 Jul
2023, pp. 4682–4691. PMLR.

Jetchev N, Lang T and Toussaint M (2013) Learning grounded
relational symbols from continuous data for abstract rea-
soning. In: Proceedings of the 2013 ICRA workshop on
autonomous learning, Karlsruhe, Germany, 6–10 May 2013.

Kim K, Fainekos G and Sankaranarayanan S (2015) On the
minimal revision problem of specification automata. The
International Journal of Robotics Research 34(12):
1515–1535.

Konidaris G, Kaelbling LP and Lozano-Perez T (2018) From skills
to symbols: Learning symbolic representations for abstract
high-level planning. Journal of Artificial Intelligence Re-
search 61: 215–289.

Könighofer R, Hofferek G and Bloem R (2009) Debugging formal
specifications using simple counterstrategies. In: Formal
methods in computer-aided design, Austin, TX, 15–18
November 2009, pp. 152–159. IEEE.

Kress-Gazit H, Fainekos GE and Pappas GJ (2009) Temporal-
logic-based reactive mission and motion planning. IEEE
Transactions on Robotics 25(6): 1370–1381.

Kress-Gazit H, Lahijanian M and Raman V (2018) Synthesis for
robots: guarantees and feedback for robot behavior. Annual
Review of Control, Robotics, and Autonomous Systems 1:
211–236.

Lahijanian M, Andersson SB and Belta C (2012) Temporal logic
motion planning and control with probabilistic satisfaction
guarantees. IEEE Transactions on Robotics 28(2): 396–409.

Lahijanian M, Maly MR, Fried D, et al. (2016) Iterative temporal
planning in uncertain environments with partial satisfaction
guarantees. IEEE Transactions on Robotics 32(3): 583–599.

Pacheck et al. 287

https://doi.org/10.1177/0278364918761570

Lee J, Nam C, Park J, et al. (2021) Tree search-based task and
motion planning with prehensile and non-prehensile ma-
nipulation for obstacle rearrangement in clutter. In: IEEE
international conference on robotics and automation, Xi’an,
China, 30 May 2021–05 June 2021, pp. 8516–8522. IEEE.

Li W, Dworkin L and Seshia SA (2011) Mining assumptions for
synthesis. In: ACM/IEEE international conference on formal
methods and models for codesign, Cambridge, UK, 11–13
July 2011, pp. 43–50. IEEE Computer Society.

Mazo M, Davitian A and Tabuada P (2010) Pessoa: a tool for
embedded controller synthesis. In: International conference
on computer aided verification, Berlin, Heidelberg, 17–22
July 2010, pp. 566–569. Springer-Verlag.

McDermott D, Ghallab M, Howe A, et al. (1998) Pddl—the
planning domain definition language. Yale Center for
Computational Vision and Control, Technical report CVC
TR98003/DCS TR1165.

Mugan J and Kuipers B (2009) Autonomously learning an action
hierarchy using a learned qualitative state representation. In:
Proceedings of the 21st international jont conference on artifical
intelligence, Pasadena, CA, 11–17 July 2009, pp. 1175–1180.

Mugan J and Kuipers B (2012) Autonomous learning of high-level
states and actions in continuous environments. IEEE Trans-
actions on Autonomous Mental Development 4(1): 70–86.

Muhayyuddin, Moll M, Kavraki L, et al. (2018) Randomized
physics-based motion planning for grasping in cluttered and
uncertain environments. IEEE Robotics and Automation
Letters 3(2): 712–719.

Pacheck A, Konidaris G and Kress-Gazit H (2019) Automatic
encoding and repair of reactive high-level tasks with learned
abstract representations. In: International symposium on ro-
botics research, Hanoi, Vietnam, 6–10 October 2019.

Pacheck A, Moarref S and Kress-Gazit H (2020) Finding missing
skills for high-level behaviors. In: International conference on
robotics and automation, Paris, France, 31 May 2020–31
August 2020, pp. 10335–10341. IEEE.

Parzen E (1962) On estimation of a probability density function and
mode. The Annals of Mathematical Statistics 33(3): 1065–1076.

Pnueli A (1977) The temporal logic of programs. In: 18th annual
symposium on foundations of computer science, Provi-
dence, RI, 31 October 1977–02 November 1977, pp. 46–57.
IEEE.

Raman V and Kress-Gazit H (2013) Explaining impossible high-
level robot behaviors. IEEE Transactions on Robotics 29(1):
94–104.

Rosenblatt M (1956) Remarks on some nonparametric estimates of
a density function. The Annals of Mathematical Statistics 27:
832–837.

Srivastava S, Fang E, Riano L, et al. (2014) Combined task and
motion planning through an extensible planner-independent
interface layer. In: IEEE international conference on robotics
and automation, Hong Kong, China, 31 May 2014–07 June
2014, pp. 639–646. IEEE.

Ugur E and Piater J (2015a) Bottom-up learning of object cate-
gories, action effects and logical rules: from continuous
manipulative exploration to symbolic planning. In: Interna-
tional conference on robotics and automation, Seattle, WA,
26–30 May 2015, pp. 2627–2633. IEEE.

Ugur E and Piater J (2015b) Refining discovered symbols with
multi-step interaction experience. In: 2015 IEEE-RAS 15th
international conference on humanoid robots, Seoul, South
Korea, 03–05 November 2015, pp. 1007–1012. IEEE.

Wang J and Olson E (2016) AprilTag 2: efficient and robust fi-
ducial detection. In: International conference on intelligent
robots and systems, Daejeon, South Korea, 09–14 October
2016, pp. 4193–4198. IEEE.

Wongpiromsarn T, Topcu U and Murray RM (2010) Receding
horizon control for temporal logic specifications. In: ACM
international conference on hybrid systems: computation
and control. ACM, Milan Italy, 4–6 May 2022,
pp. 101–110.

Yoon S, Fern A and Givan R (2007) Ff-replan: a baseline for
probabilistic planning. In: Proceedings of the seventeenth
international conference on automated planning and sched-
uling, ICAPS, Providence, RI, 22–26 September 2007,
pp. 352–359.

288 The International Journal of Robotics Research 42(4-5)

	Automatic encoding and repair of reactive high-level tasks with learned abstract representations
	1. Introduction
	2. Related work
	3. Preliminaries
	3.1. Skills
	3.2. Symbol generation
	3.3. Linear Temporal Logic
	3.4. Synthesis

	4. Problem formulation
	5. Specification encoding
	5.1. Skills-based specification (φskills)
	5.1.1. System safety (φt,skillss)
	5.1.2. Environment safety (φt,skillse)

	5.2. Task specification, synthesis, and execution

	6. Specification repair
	6.1. Enumeration-based repair
	6.2. Synthesis-based repair

	7. Robot demonstrations
	7.1. Environment setup
	7.2. Skills
	7.3. Symbol generation
	7.4. Skills-based specification
	7.5. Realizable base task specifications
	7.6. Synthesis and execution
	7.7. Repair of unrealizable tasks
	7.8. Enumeration-based versus synthesis-based repair

	8. Conclusion
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Supplemental Material
	Note
	References

