
Augmentative Topology Agents For Open-ended Learning
Muhammad Umair Nasir, Michael Beukman, Steven James, Christopher Cleghorn

University of the Witwatersrand
School of Computer Science and Applied Mathematics

Johannesburg, South Africa
{umairnasir1,michael.beukman1}@students.wits.ac.za,{steven.james,christopher.cleghorn}@wits.ac.za

ABSTRACT
We tackle the problem of open-ended learning by introducing a
method that simultaneously evolves agents while also evolving in-
creasingly challenging environments. Unlike previous open-ended
approaches that optimize agents using a fixed neural network topol-
ogy, we hypothesize that generalization can be improved by allow-
ing agents’ controllers to become more complex as they encounter
more difficult environments. Our method, Augmentative Topology
EPOET (ATEP), extends the Enhanced Paired Open-Ended Trail-
blazer (EPOET) algorithm by allowing agents to evolve their own
neural network structures over time, adding complexity and ca-
pacity as necessary. Our empirical results demonstrate that ATEP
produces general agents capable of solvingmore environments than
fixed-topology baselines. We also investigate mechanisms for trans-
ferring agents between environments and find that a species-based
approach further improves the performance and generalization of
agents.

CCS CONCEPTS
• Computing methodologies → Lifelong machine learning; •
Theory of computation → Evolutionary algorithms.

KEYWORDS
open-ended learning, lifelong learning, neural networks, neuroevo-
lution, reinforcement learning

ACM Reference Format:
Muhammad Umair Nasir, Michael Beukman, Steven James, Christopher
Cleghorn. 2023. Augmentative Topology Agents For Open-ended Learning.
In Genetic and Evolutionary Computation Conference Companion (GECCO
’23 Companion), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3583133.3590576

1 INTRODUCTION
Machine learning has successfully been used to solve challenging
problems, such as Atari [5] and chess [6]. While impressive, these
approaches still largely follow a traditional paradigm where a hu-
man specifies a task that is subsequently solved by the agent. In
most cases, this is the end of the agent’s learning—once it can solve
the required task, no further progression takes place.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0120-7/23/07.
https://doi.org/10.1145/3583133.3590576

In contrast, the subfield of open-ended learning seeks to develop
agents capable of learning indefinitely [9]. To achieve this, a com-
mon paradigm is to allow both the agents and their environments
to change, evolve and improve over time [1, 11].

One algorithm that adopts this approach is Enhanced Paired
Open-Ended Trailblazer (EPOET), which creates environments end-
lessly while evolving agents to solve each of them [12]. The authors
use a modified version of the 2D Bipedal Walker Hardcore en-
vironment from OpenAI Gym [2] as a benchmark. The first envi-
ronment is a flat surface and, as evolution progresses, the environ-
ments become harder with the addition of more obstacles. POET
also transfers agents across environments, which allows agents to
leverage experience gained in one environment to solve another.
An Environment-Agent (EA) pair is eligible to reproduce when
the agent crosses a preset reward threshold on this environment.
The next generation of environments is formed by mutating the
current population and selecting only those environments that are
neither too easy nor too hard. Finally, environments are ranked by
novelty, and only the most novel children pass through to the next
generation.

EPOET also extends prior work [11] along several fronts. First,
EPOET uses compositional pattern-producing networks (CPPNs) [7]
to mutate the environment, rather than mutating obstacles. Sec-
ondly, Wang et al. [12] introduce an Environment Characterization
score, named Performance of All Transferred Agents EC (PATA-EC),
as a domain-general environment characterization score. PATA-EC
is a normalized score that describes the environment’s behaviour
through all active and archived agents’ behaviour on the environ-
ment. The Euclidean distance between these scores can be used to
determine novel environments in a domain-independent fashion.
Finally, EPOET introduces a more selective transfer mechanism. As
a result, only very promising agents undergo transfer.

However, the problem with these systems in general (and EPOET
in particular) is that the agents have fixed neural network topologies.
This means that the agent has a fixed capacity, which could cause
learning to plateau—as observed by Wang et al. [12]—once the
environments become too complex.

To tackle this problem, we apply NeuroEvolution of Augmenting
Topologies (NEAT) [8] to EPOET. NEAT is a genetic algorithm that
evolves the structure and weights of neural networks, instead of
just evolving the weights within a fixed structure. Using NEAT
allows the agents’ network topologies to increase in complexity
over time, leading to indefinite learning potential. In this work,
we demonstrate that our method, Augmentative Topology EPOET
(ATEP), can improve performance compared to the fixed-topology
version.

https://doi.org/10.1145/3583133.3590576
https://doi.org/10.1145/3583133.3590576


GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Muhammad Umair Nasir, Michael Beukman, Steven James, Christopher Cleghorn

2 PROPOSED METHOD
In this section, we discuss the basic building blocks of our algorithm
and the different variants we experiment with. ATEP combines
EPOET with NEAT to allow the agents’ network topologies to
evolve. This means that the algorithmic steps are very similar to
EPOET, and the main differences are (1) the optimizer used: we use
NEAT to optimize the variable-topology agents whereas EPOET
used Evolution Strategies to optimize fixed-topology agents; and (2)
the transfer mechanism, discussed later in this section. The detailed
flow of ATEP is illustrated in Figure 1.

We first use NEAT to evolve a population of agents for each
environment. The valid environments (those that pass the minimal
criterion) then reproduce to create a new generation of (slightly
harder) environments. We then take the environment that is the
most novel, as measured by the Euclidean distance between the
PATA-EC scores), and create a new environment-agent pair. The
transfer eligibility of these environments is then evaluated, and if
there are valid transfers available, we can move agents between
environments.

In EPOET, the transfer is performed as follows: we compare
the fitness of the candidate agent to the fitness of the target agent
over the previous 5 generations. If the candidate’s fitness is greater
than all previous 5 fitness scores, we fine-tune it on the target
environment and again compare it against the best fitness from
the previous 5 generations. If the candidate outperforms the target
agent in both cases, we transfer the candidate and replace the target.

For ATEP, we experiment with two different transfer mecha-
nisms. The first approach, termed Fitness-Based Transfer ATEP (FBT-
ATEP), is inspired by EPOET’s mechanism. In this case, we compare
the best genome in the candidate population to the best genome
from the target population. We then perform the same checks as
EPOET, and if both are passed, we replace the entire target popula-
tion with the candidate population.

For the second transfer mechanism, we use the speciation in-
herent in NEAT to influence transfer. Specifically, we check if the
best genome in the candidate population is within a 𝛿 threshold of
any target environment’s best genome. This threshold is given by
𝛿 = 𝑐1𝐸/𝑁 + 𝑐2𝐷/𝑁 + 𝑐3𝑊 , where 𝑐1, 𝑐2, 𝑐3 are importance coeffi-
cients, 𝑁 is the number of genes in the larger genome, 𝐸 and 𝐷 are
the numbers of excess and disjoint genes respectively, and𝑊 is the
average weight difference of similar genes.

If this is the case, we transfer the candidate species and replace
the target species with it. This approach, called Species-Based Trans-
fer ATEP (SBT-ATEP), avoids the need to compare fitness scores
and has its own advantages, which we discuss in the next section.
Algorithm 1 illustrates the pseudocode for Species-Based Trans-
fer. Finally, we also consider random transfer (RT-ATEP) and no
transfer (NT-ATEP) to investigate whether the transfer mechanisms
have a large impact on the results.

3 EXPERIMENTS AND RESULTS
To reduce the amount of compute required for our experiments,
we change one aspect of the original EPOET paper by reducing the
number of active environment-agent pairs from 40 to 20. We make
this change to both EPOET and ATEP to ensure a fair comparison.
We consider two baselines: the first, denoted as EPOET40x40, is

Algorithm 1: Species-Based Transfer
Input :Candidate population’s best individual 𝐼𝑐 . A

function 𝑓 𝑖𝑛𝑑_𝑑𝑒𝑙𝑡𝑎(.) that calculates delta score
and 𝛿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

Let𝑀 = All environments \{Candidate environment}
foreach𝑚 ∈ 𝑀 do

𝐼𝑚 = best individual of environment𝑚
𝛿𝑐𝑡 = find_delta(𝐼𝑐 , 𝐼𝑚)
if 𝛿𝑐𝑡 ≤ 𝛿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

Delete target species
Transfer candidate species to target population

else
Transfer is not permitted

end
end

EPOET with the original controller consisting of two hidden lay-
ers with 40 nodes each. The second baseline, EPOET20x20, is a
controller with two layers of 20 nodes each. This also allows us to
evaluate the effect of having a small fixed topology, a comparatively
larger fixed topology, and a variable topology.

All results are averaged over 5 iterations owing to the expensive
computational load, with each algorithm requiring approximately
50k to 200k CPU hours for a single run. EPOET20x20 required the
least amount of computation, while SBT-ATEP required the most.
Each algorithm was run in parallel on a cluster consisting of 264
cores, with the runtime ranging between 10 and 30 days.

3.1 Investigating Open-endedness
To quantify open-endedness, we use the All New and Novel Envi-
ronments Created and Solved (ANNECS) score [12] to measure the
progress of the overall system. A high ANNECS score indicates that
the system is not simply creating easily-solvable environments, but
also creates more challenging environments. We consider this met-
ric as our most important score to judge which algorithm performs
better in complex environments.

Figure 2 shows the ANNECS score as a function of training time.
We see a significant difference between EPOET20x20 and both
the FBT-ATEP and SBT-ATEP, indicating that the small network
results in fewer solved environments. EPOET40x40 performs sub-
stantially better than EPOET20x20, and is competitive with ATEP
early on during training. The rate of increase in ANNECS, however,
does decrease after about 13k iterations, whereas ATEP increases
at a consistent rate. This substantiates our hypothesis that fixed
topology agents will start stagnating at some level of environment
complexity, due to capacity issues. While we can improve the re-
sults by increasing the size of the network, this will merely delay
the onset of the performance plateau.

FBT-ATEP outperforms EPOET40x40, although it also slows
down slightly as time progresses. This is potentially due to replacing
the entire target population with the transferred population, which
may eliminate all useful skills learned by the target population. SBT-
ATEP, on the other hand, only replaces a single species that is close
to the candidate species, leaving the rest of the population intact.
We also find that SBT-ATEP has negligible performance plateaus



Augmentative Topology Agents For Open-ended Learning GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Figure 1: A flowchart illustrating the ATEP framework. For both EPOET and ATEP, each environment is associated with an
agent, represented by an ES population for EPOET and a NEAT population for ATEP.

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

0

20

40

60

80

100

Model

FBT-ATEP

SBT-ATEP

E-POET40x40

E-POET20x20

RT-ATEP

NT-ATEP

Iterations

A
N
N
E
C
S

Figure 2: Accumulated Number of Novel Environments Created and Solved (ANNECS). The results are averaged over 5 seeds
with the lines and error bars representing the mean and standard deviation respectively. To save compute, we halt the NT- and
RT-ATEP experiments early, as it is clear that they perform poorly.

during the run of our experiments in solving environments. Further,
even though it performs similarly to FBT-ATEP and EPOET40x40
early on during training, it starts to outperform these in the second
half of the experiment. This, as we show in the supplementary
material, is partly due to SBT-ATEP exploring more actions. We
finally note that the variations using no transfer (NT-ATEP) or ran-
dom transfer (RT-ATEP) perform poorly, indicating that intelligent
transfer mechanisms are necessary.

Although ATEP outperforms EPOET, it is more computationally
expensive, as measured by the number of function evaluations. One
function evaluation means one individual being evaluated on an
environment. SBT-ATEP has the most function evaluations since
once a species transfers from one population to another, it becomes
highly probable that it can transfer in the opposite direction be-
cause it may now be within the 𝛿𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 range. This increases the
population size, resulting in more function evaluations.

3.2 Investigating Generalization
We next evaluate the generalizability of our open-ended agents, as
prior work [10] has shown that these agents have the potential to
generalize to different environments.We first test the generalization
capabilities of agents produced by a given algorithm on all of the
environments created by that same algorithm. We take into account
80 environments that were solved by the model itself and observe
how each agent performs on all of them.1 We split the results
into three categories: environments with fitness scores above 300,
between 200 and 300, and below 200. Scores below 200 indicate that
the environment has not been solved by the agent.

The results in Figure 3 indicate that early-stage agents perform
worse, while late-stage agents are shown to have generalization
abilities on previously unseen landscapes. The transfer mechanism
plays a key role in this generalization, as it exposes agents to more
1We exclude EPOET20x20 as it fails to solve 80 environments across the entire run.



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Muhammad Umair Nasir, Michael Beukman, Steven James, Christopher Cleghorn

20 40 60 80
0

20

40

60

80 Fitness
Above 300
200 to 300
Below 200

Agents

En
vi

ro
nm

en
ts

(a) EPOET40x40

20 40 60 80
0

20

40

60

80 Fitness
Above 300
200 to 300
Below 200

Agents

En
vi

ro
nm

en
ts

(b) FBT-ATEP

20 40 60 80
0

20

40

60

80 Fitness
Above 300
200 to 300
Below 200

Agents

En
vi

ro
nm

en
ts

(c) SBT-ATEP

Figure 3: Figures showing generalization capabilities. Figures (a), (b) and (c) show agents of 80 solved environments being
tested on all 80 environments, for EPOET40x40, FBT-ATEP and SBT-ATEP respectively. The Y-axis shows the percentage of
environments in each category, with means reported over 30 runs.

environments. Despite not having seen all environments, late-stage
agents generalize significantly better. SBT-ATEP demonstrates the
best generalization, with the lowest proportion of unsolved envi-
ronments when compared to EPOET40x40 and FBT-ATEP.

To test generalization to new, unseen environments, we next
take the 20 latest environments from each algorithm. For each envi-
ronment, we take the latest agent that could solve this environment
from the approach under consideration. Each of these agents is now
evaluated on the selected environments from all other approaches.
Figure 4 shows the performance of each method when evaluated
on the 60 other environments, where we observe that SBT-ATEP
outperforms all other models, with only 10% of the environments
remaining unsolved.

4 CONCLUSION AND FUTUREWORK
This work investigated the effect of having an augmentative topol-
ogy agent on an open-ended learning algorithm’s performance. We
hypothesized that using a fixed topology would result in agents
that exhibit delays in solving an environment after a certain point
in environment complexity. We showed that this is indeed the case,
and addressed this limitation by introducing ATEP, which allows
the network topology of the agents to change and add complexity
as necessary. We demonstrated that this approach outperforms
existing methods in terms of the ANNECS and generalizability.

SBT FBT EPOET40x40 EPOET20x20
0

20

40

60

80

100 Fitness
Above 300
200-300
Below 200

Algorithm

En
vi

ro
nm

en
ts

Figure 4: Each algorithm’s agent evaluated on the 20 latest en-
vironments created by all other algorithms. The Y-axis shows
the percentage of environments in each category. Means over
30 runs are reported.

Promising future directions include incorporating novelty search
[3], or exploring alternatives to NEAT such as neurogenesis [4]. Our
work demonstrates that transfer mechanisms have a large overall
impact, and while we compared simple approaches such as FBT and
SBT, more advanced approaches could yield further performance
improvements. For instance, we could combine both FBT and SBT
in a weighted manner, or transfer only a certain percentage of a
species or population. Ultimately, we hope that this new approach
furthers research into open-ended algorithms that continue to learn
over time and can adapt to an ever-changing environment.

ACKNOWLEDGMENTS
The authors acknowledge the Centre for High Performance Com-
puting (CHPC), South Africa, for providing computational resources
to this research project.

REFERENCES
[1] J. C. Brant and K. O. Stanley. Minimal criterion coevolution: a new approach to

open-ended search. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 67–74, 2017.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

[3] J. Lehman, K. O. Stanley, et al. Exploiting open-endedness to solve problems
through the search for novelty. In ALIFE, pages 329–336, 2008.

[4] K. Maile, E. Rachelson, H. Luga, and D. G. Wilson. When, where, and how to add
new neurons to ANNs. arXiv preprint arXiv:2202.08539, 2022.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[7] K. O. Stanley. Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 8(2):131–162, 2007.

[8] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[9] K. O. Stanley, J. Lehman, and L. Soros. Open-endedness: The last grand challenge
you’ve never heard of. O’Reilly Online, 2017. URL https://www.oreilly.com/ideas/
open-endedness-the-last-grand-challenge-youve-never-heard-of.

[10] O. E. L. Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Sygnowski,
M. Trebacz, M. Jaderberg, M. Mathieu, et al. Open-ended learning leads to
generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

[11] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trailblazer
(POET): Endlessly generating increasingly complex and diverse learning envi-
ronments and their solutions. arXiv preprint arXiv:1901.01753, 2019.

[12] R. Wang, J. Lehman, A. Rawal, J. Zhi, Y. Li, J. Clune, and K. Stanley. Enhanced
POET: Open-ended reinforcement learning through unbounded invention of
learning challenges and their solutions. In International Conference on Machine
Learning, pages 9940–9951, 2020.

https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of
https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-youve-never-heard-of

	Abstract
	1 Introduction
	2 Proposed Method
	3 Experiments And Results
	3.1 Investigating Open-endedness
	3.2 Investigating Generalization

	4 Conclusion and Future Work
	Acknowledgments
	References

