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Abstract

An important property of long-lived agents is the ability to reuse existing knowledge
to solve new tasks. An appealing approach towards obtaining such agents is by leveraging
logical composition over tasks, where new tasks are defined by applying logic operators
to previously-solved ones. This composition is particularly powerful since it provides a
human-understandable mechanism for task specification. However, no unifying formalism
for applying logic operators to tasks and generalising combinatorially over them has yet
been developed. We address the problem by formally defining logical composition as oper-
ators acting on a set of tasks in a lattice structure—the algebraic structure that generalises
the study of Boolean logic. This provides a theoretically rigorous method for composing
tasks, allowing us to formulate new tasks in terms of the negation, disjunction, and con-
junction of a set of base tasks. We prove that by learning a new type of goal-oriented
value function model free, called the world value function, an agent can solve composite
tasks involving arbitrary logical operators with no further learning. We verify our approach
in high-dimensional domains—including a video game environment and continuous-control
task—where an agent first learns to solve a set of base tasks, and then composes these
solutions to solve a super-exponential number of new tasks.

1. Introduction

Reinforcement learning (RL) has achieved recent success in a number of difficult, high-
dimensional environments [Mnih et al., 2015; Levine et al., 2016; Lillicrap et al., 2016;
Silver et al., 2017]. However, these methods generally require millions of samples from
the environment to learn optimal behaviours, limiting their real-world applicability. A
major challenge is thus in designing sample-efficient agents that can transfer their existing
knowledge to solve new tasks quickly. This is particularly important for agents in a multitask
or lifelong setting, since learning to solve complex tasks from scratch is typically infeasible.
More desirable would be an agent that can leverage its knowledge from previous tasks to
solve new ones [Thrun, 1996; Taylor & Stone, 2009].

One approach to tackling this problem is that of composition [Todorov, 2009; Mendez
& Eaton, 2022], where an agent leverages existing skills to build complex, novel behaviours.
These newly-formed skills can then be used to immediately solve new tasks (zero-shot
composition) or speed up the learning of new tasks (few-shot composition). Zero-shot
composition is of particular interest, since it provides a mechanism for generalising over a
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Figure 1: Video game domain with different composable tasks [van Niekerk et al., 2019].
Each task is defined by the objects the agent is required to collect.

task space without additional learning. A particularly important type of composition is
the logical composition of previously solved tasks—that is, new tasks formed by applying
the logic operators OR, AND, and NOT on past tasks. One major advantage of this form of
composition is that it provides a human designer with an easy way to understand and reason
about tasks, which is particularly important for explainable and interpretable reinforcement
learning [Heuillet et al., 2021; Qing et al., 2022; Glanois et al., 2024]. Furthermore, while
it can be difficult to specify a reward function that induces desired behaviour in an agent,
logical composition provides a straightforward avenue for specifying new composite tasks
with guaranteed semantics.

To illustrate, consider a domain where different tasks require an agent to collect objects
of different shapes and colours (Figure 1). If an agent has learned to collect any square
(Square task) and any blue object (Blue task), zero-shot logical composition would then
allow the agent to solve any of the following tasks immediately:

• Square AND Blue: Collect blue squares.

• Square AND (NOT Blue): Collect squares that are not blue.

• (Square OR Blue) AND NOT(Square AND Blue): Collect squares or blue objects that are
not blue squares.

In this work, we are hence interested in the logical combination of tasks and skills in the
model-free setting—this constraint will ensure our framework is applicable even when the
reward and transition functions are not known to the agent. Since logic are abstracted in
lattice theory [Birkhoff, 1940], we use the algebraic structures therein to formalise the logical
composition of tasks and skills in reinforcement learning. We first define a lattice algebra
over the set of tasks. This formalises and unifies the disjunctive and conjunctive composi-
tions considered by previous work [Todorov, 2009; Saxe et al., 2017; Haarnoja et al., 2018a;
van Niekerk et al., 2019; Hunt et al., 2019]. We then give a formal meaning to the negation
of tasks, which is used to define a De Morgan algebra over the task space. This extends pre-
vious composition problems to encompass all logic operators: conjunction, disjunction, and
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negation. We show that for tasks with restricted rewards, the De Morgan algebra extends
to a Boolean algebra, which gives task composition the full semantics of Boolean logic.

To attain zero-shot composition, we introduce a new type of value function called the
world value function, which can be learned model-free and encodes how to achieve various
outcomes for a single task. Using this rich knowledge, and focusing our attention on goal-
reaching tasks, we prove that zero-shot logical composition can be achieved by composing
these world value functions. Consequently, given a set of base tasks that have been previ-
ously solved by the agent, any new task written as a logic expression can immediately be
solved without further learning, resulting in a zero-shot super-exponential explosion in the
agent’s abilities. We summarise our main contributions as follows:

1. Task algebra (Section 3): We formalise the disjunction, conjunction, and negation of
tasks as operators acting on a set of tasks in lattice structures. This introduces a
notion of task space, and enables interpretable and trivial task specifications. This
is important in complex lifelong settings, where constructing rewards for new tasks
can prove difficult. A main result obtained from this formalism is the notion of base
tasks, which are the minimal set of tasks that are sufficient to specify and generate
any other task in a task space. This is essential in the lifelong setting where the task
space is simply too large to construct rewards for all desired tasks.

2. World value functions (Section 4): This is a new type of goal-conditioned value func-
tion that we introduce to later achieve zero-shot composition. It can be learned
model-free and encodes knowledge of how to achieve various goals in an environment,
and is therefore suitable for transferring to new tasks within the same environment.

3. Zero-shot composition (Section 5): We prove that any goal-reaching task specified as
the logical composition of learned tasks can be solved immediately without further
learning. We demonstrate via a series of experiments that this holds not only theoret-
ically but also practically, even when the theoretical assumptions are violated. This
enables lifelong learning agents to solve a super-exponentially increasing number of
tasks as the number of learned base tasks increase.

We illustrate our approach in gridworld domains, where an agent first learns to navigate
to particular regions, after which it can then optimally solve any task specified as their
logical combination. We then demonstrate composition in a high-dimensional video game
environment, where an agent first learns to collect different objects, and then compose
these abilities to solve complex tasks immediately. We also apply our approach to a high-
dimensional, continuous control task, demonstrating applicability to domains with low-level
continuous actions. Our results show that, even when function approximation is required,
an agent can leverage its existing skills to solve new tasks without further learning.1

The remaining sections are organised as follows: we provide a brief introduction to
reinforcement learning and lattice theory in Section 2. In Section 3, we develop a formal
framework for the logical composition of tasks, and introduce the notion of a base task,

1. This article develops and substantially extends ideas first presented in an earlier conference paper
[Nangue Tasse et al., 2020] by introducing the notion of task lattices and De Morgan algebra, proving zero-
shot composition for them, and demonstrating applicability to high-dimensional continuous control tasks.
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which has been so far mentioned only informally in the literature. We present a new goal-
conditioned value function in Section 4 which can be leveraged to solve composite tasks in
a zero-shot manner. Finally, in Section 5, we demonstrate zero-shot transfer in both the
tabular and function approximation setting.

2. Preliminaries

We are interested in the multitask or lifelong learning problem, where an agent is faced with
a number of tasks modeled by a collection of Markov Decision Processes (MDPs) [Sutton
et al., 1998]. An MDP is defined by the tuple (S,A, P,R, γ), where (i) S is the agent’s
state space, (ii) A is its action space, (iii) P (s′|s, a) is the Markov transition probability of
its environment, (iv) R(s, a, s′) is the real-valued reward function defining the agent’s task,
and (v) γ ∈ [0, 1] is the agent’s discount factor. For clarity, we will focus on MDPs with
finite S and A, but note that the theory also hold for continuous S and A. The set of tasks
is then naturally defined as follows:

Definition 1 A set of tasks M is a set of MDPs M ∈ M in the same environment
(S,A, P, γ) that differ only in their reward functions RM .

An agent’s goal is to learn a policy π that specifies the actions to take in each state to
maximise the action-value function Q, which is the total sum of possibly discounted rewards
it expects to receive in the future: Qπ(s, a) := Eπ

s

[∑∞
t=0 γ

tR(st, at, st+1)
∣∣s0 = s, a0 = a

]
.

By defining a partial ordering over policies, and under mild assumptions over the reward
functions,2 it can be shown that there exists an optimal deterministic policy π∗ ≥ π,∀π,
which leads to the optimal value functions, Qπ∗

(s, a) = Q∗(s, a) = maxπ Q
π(s, a) ∀π∗. We

can obtain the optimal policy by acting greedily with respect to the optimal action-value
function: π∗(s) = argmaxa∈AQ∗(s, a). Finally, since we are interested in ultimately having
agents that can solve tasks in complex environments with unknown transition probabilities
and reward functions, we will constrain ourselves to model-free RL [Sutton et al., 1998].
There are several methods for learning optimal action-value functions in this setting, such
as Q-learning [Watkins, 1989].

2.1 Lattice Theory

To precisely articulate the logical composition of tasks, we will utilize the mathematical
framework of lattice theory. Lattice theory is a generalisation of the study of Boolean al-
gebras and can be interpreted through the lens of either order theory or abstract algebra
[Grätzer, 2002]. The basic concepts under the order theoretic view are the least upper
bounds and greatest lower bounds of elements in a partial order, which correspond to the
algebraic concepts of join (disjunction) and meet (conjunction) of elements. Since we are
primarily interested in the conjunction, disjunction, and negation operators, our main focus
is on the algebraic interpretation as we build our way up to a Boolean algebra. However,
we also use the order theoretic view whenever that seems most natural. In order theory, a
lattice is a partial order (L,≤) in which every pair of elements a, b ∈ L has a least upper

2. When the discount factor is 1, the rewards are assumed to be such that the value functions for improper
policies—those that never reach terminal states—are unbounded below [van Niekerk et al., 2019].
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bound (their supremum) and a greatest lower bound (their infimum) [Grätzer, 2011]. The
equivalent algebraic definition is as follows:

Definition 2 A Lattice algebra (L,∨,∧) is a set L equipped with the binary operators ∨
and ∧ which satisfies the following lattice axioms for a, b, c in L:

(i) Idempotence: a ∧ a = a ∨ a = a.

(ii) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a.

(iii) Associativity: a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∧ (b ∨ c) = (a ∨ b) ∨ c.

(iv) Absorption: a ∧ (a ∨ b) = a ∨ (a ∧ b) = a.

A lattice order (L,≤) induces a lattice algebra (L,∨,∧) with ∨ and ∧ given by a∨ b :=
sup{a, b} and a∧b := inf{a, b}. We can then call a set B ⊆ L a basis of L if it is the smallest
set that can generate all elements of L by applying the logical operators of L.3 While the
lattice algebra defines conjunction and disjunction, it says nothing of the negation operator.
The De Morgan algebra, on the other hand, provides an intuitive notion of negation.

Definition 3 A De Morgan algebra (L,∨,∧,¬) is a set L equipped with the binary operators
∨ and ∧, and the unary operator ¬ (involution, negation), which satisfies the following De
Morgan algebra axioms for a, b, c in L:

(i) All the lattice axioms.

(ii) Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

(iii) Identity: there exists 0,1 in L such that 0 ∧ a = 0, 0 ∨ a = a, 1 ∧ a = a,1 ∨ a = 1.

(iv) De Morgan involution: ¬¬a = a and ¬(a ∨ b) = ¬a ∧ ¬b.

In other words, a De Morgan algebra is a bounded distributive lattice equipped with a
De Morgan involution (a negation operator that satisfies the De Morgan laws).

Finally, notice that the De Morgan involution does not necessarily satisfy the law of
the excluded middle (a ∨ ¬a = 1) and the law of non-contradiction (a ∧ ¬a = 0), which
are neccessary to have the familiar semantics of propositional logic and set theory [Grätzer,
2011]. A Boolean algebra gives us those semantics by enforcing said laws:

Definition 4 A Boolean algebra (L,∨,∧,¬) is a set L equipped with the binary operators
∨ (disjunction) and ∧ (conjunction), and the unary operator ¬ (negation), which satisfies
the following Boolean algebra axioms for a, b, c in L:

(i) All the De Morgan algebra axioms.

(ii) Complements: ∀a ∈ L, there exists ¬a = a′ ∈ L such that a ∧ a′ = 0 and a ∨ a′ = 1.

3. For simplicity, we adopt the convention of Grätzer [2011] of referring to an algebraic structure (e.g., the
lattice (L,∨,∧)) by the set on which it is defined (L), when the distinction is clear given the context.
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3. Compositional Tasks

Before we can construct agents capable of solving new compositional tasks, we must formally
define these composite tasks.4 Since reinforcement learning models tasks as MDPs, we
require principled ways of composing these MDPs to produce new MDPs that model a
desired task specification. This is done by leveraging the structure of lattice algebras since,
as outlined above, they abstract the notion of disjunction, conjunction, and negation. Since
the Boolean algebra is the most restrictive, we will first start with a general lattice and then
increasingly constrain the task space with necessary assumptions on the road to a Boolean
algebra. During this process, we will also illustrate some of the different types of semantics
of task compositions that result from different lattice structures. We will use the following
simple bin-packing domain as a running example.

(a) Bin packing domain
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(b) Gridworld representation

Figure 2: Gridworld representation of the simple bin packing domain.

Example 1 Consider an environment where an agent needs to manipulate a robotic arm
to pack (or unpack) objects into (from) a green bin (Figure 2a). There are 10 red objects
and 10 blue objects in the domain, resulting in 11 × 11 states where each state s = (r, b)
corresponds to the number of red (r) and blue (b) objects in the bin. The agent has actions to
command the robotic arm to put a red object into the bin (→), remove a red object from the
bin (←), put a blue object into the bin (↑), and remove a blue object from the bin (↓). These
actions do nothing if there are no red or blue objects inside or outside of the bin to execute
them. The agent also has a fifth action (•) for “done” that it chooses to terminate; a state
only becomes terminal if the agent chooses the done action in it. Figure 2b illustrates the
gridworld representation of this domain, and Figure 3 shows the effect of each action in it.

Consider a task in which the robot must pack all the red objects into the bin ( ). The
non-terminal rewards (rewards for all non-terminal transitions) are RMIN = 0 and the ter-
minal rewards range from RMIN = 0 to RMAX = 1. The discount factor used is γ = 0.95.
That is, an agent receives a reward of RMIN as it acts in the environment but when it chooses
the done action at any state, it receives a reward between RMIN and RMAX depending on
how close it is to the desired states. Figure 4 shows the terminal rewards, optimal policy,
and trajectory of the robot packing red objects into the bin.

4. All theorems are stated here, and proofs are presented in the Appendix for clarity.
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(a) ↑ action

(b) → action

(c) ↓ action

(d) ← action

(e) • action

Figure 3: Example trajectories of the robotic arm for each action in the bin packing domain.
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Figure 4: Terminal rewards (a), learned optimal policy and value function (b), and resulting
robot arm trajectories for the task in which the robot must pack all the red objects into
the bin. The optimal policies and value functions are obtained using Q-learning.
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3.1 Task Lattice

Having described how a lattice algebra abstracts the usual concept of disjunction and con-
junction, we now formalise the meaning of disjunction and conjunction of tasks. Consider
the set of all tasks in an environment:

MR := {M = (S,A, P,RM , γ)|RM (s, a, s′) ∈ R}

Since we have constrained ourselves to the model-free setting, we require all our definitions
to be usable even when the only information available to the agent from the MDP is its
current state s, the next state s′ ∼ P (·|s, a) and reward R(s, a, s′) after taking an action
a. Given that tasks differ only in their reward functions (Definition 1), we can achieve this
by first defining the partial order over tasks using pointwise ≤ (the usual ≤ relation on R)
over the rewards. The resulting partially ordered set of tasks is formally stated as follows:

Proposition 1 Let M1,M2 ∈ MR be tasks with reward functions RM1 and RM2 respec-
tively. Then (MR,≤) is a partially ordered set with the relation ≤ given by

M1 ≤M2 if RM1(s, a, s
′) ≤ RM2(s, a, s

′) for all (s, a, s′) ∈ S ×A× S.

■

Since the reward functions are real-valued, every pair of rewards has a least upper bound
(sup) and a greatest lower bound (inf). The resulting real functions after pointwise inf and
sup are then clearly still valid task reward functions. Hence the partially-ordered set of
tasks (MR,≤) has a least upper bound sup{M1,M2} ∈ MR and a greatest lower bound
inf{M1,M2} ∈ MR for any pair of task M1,M2 ∈ MR (since they only differ on their
rewards). The lattice (MR,∨,∧) induced by this partial order trivially follows with the
binary operators ∨ and ∧ given by M1 ∨ M2 := sup{M1,M2} ∈ MR and M1 ∧ M2 :=
inf{M1,M2} ∈ MR. We define these operators formally as follows:

Definition 5 The join ∨ : MR ×MR →MR and meet ∧ : MR ×MR →MR operators
over tasks are given by

∨(M1,M2) := (S,A, P,RM1∨M2 , γ), where RM1∨M2 : S ×A× S → R
(·) 7→ sup{RM1(·), RM2(·)},

∧(M1,M2) := (S,A, P,RM1∧M2 , γ), where RM1∧M2 : S ×A× S → R
(·) 7→ inf{RM1(·), RM2(·)}.

In fact, (MR,∨,∧) forms a distributive lattice since inf and sup with the usual ≤ in R
is distributive:

Proposition 2 (MR,∨,∧) is a distributive lattice. ■
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This allows us to jointly apply disjunction and conjuction operators to sets of tasks.
Given a non-empty finite set O of lower bounded subsets of tasks N ⊂MR, the task lattice
(MR,∨,∧) gives us the principled way of specifying the disjunction of conjunctions:

∨
N∈O

( ∧
N∈N

N

)
= (S,A, P,R∨

O

∧
N
, γ), where R∨

O

∧
N
(s, a, s′) := sup

N∈O

(
inf

N∈N
RN (s, a, s′)

)
.

Similarly, given a non-empty finite set O of upper bounded subsets of tasks N ⊂ MR,
the conjunction of disjunctions is given by,

∧
N∈O

( ∨
N∈N

N

)
= (S,A, P,R∧

O

∨
N
, γ), where R∧

O

∨
N

: (s, a, s′) := inf
N∈O

(
sup
N∈N

RN (s, a, s′)

)
.

Example 2 Consider the bin packing domain introduced in Example 1. Further consider
the specification of two tasks, and , in which the robot must pack all the red and blue
objects into the bin respectively. We can use a Hasse diagram to visualise the task sub-lattice
generated by all combinations of disjunction and conjunction of and (Figure 5). A
Hasse diagram illustrates a latticeM by drawing an edge between M1 ∈M and M2 ∈M if
they are comparable, and M1 is drawn below M2 if M1 ≤M2 [Grätzer, 2011]. Hence, ∧
is connected to and directly below them because it is their greatest lower bound. Simi-
larly, ∨ is connected to and directly above them because it is their least upper bound.

Finally, Figure 6 shows the terminal rewards (all non-terminal rewards are 0), opti-
mal policy and value function for all these tasks. We can observe how the sup and inf
of task rewards indeed result in composite task rewards with the correct semantics for the
disjunctive and conjunctive tasks respectively. To learn the corresponding optimal poli-
cies and value functions, we use Q-learning where the transition rewards are obtained us-
ing sup{R (s, a, s′), R (s, a, s′)} for their disjunction and inf{R (s, a, s′), R (s, a, s′)} for
their conjunction.

Figure 5: Hasse diagram of the task sub-lattice with basis { , }.
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(a) Pack all red objects into the bin:

(b) Pack all blue objects into the bin:

(c) Pack all red or blue objects into the bin: ∨

(d) Pack all red and blue objects into the bin: ∧

Figure 6: Terminal rewards (left column heat maps), optimal value functions (middle col-
umn heat maps), optimal policies (middle column arrows), and sample robot trajectories
(right column images) for the disjunction (c) and conjunction (d) of tasks (a-b) in the bin
packing domain. The optimal policies and value functions are obtained using Q-learning.

3.2 De Morgan Task Algebra

Having formalised the meaning of task disjunction and conjunction, we next turn our at-
tention to the negation of tasks. As discussed in Section 2, the De Morgan algebra allows
us to define this operator by adding the minimal required properties that encapsulate the
desired semantics of a negation. In particular, we only need the set of tasks to be bounded
by some tasksMINF ,MSUP ∈MR:

M[MINF ,MSUP ] := {M = (S,A, P,RM , γ) |RM (s, a, s′) ∈ [RMINF
(s, a, s′), RMSUP

(s, a, s′)]}

We can now define the negation of a task as follows:

Definition 6 Define the negation operator ¬ : M[MINF ,MSUP ] →M[MINF ,MSUP ] as

¬(M) := (S,A, P,R¬M , γ), where R¬M : S ×A× S → R
(·) 7→ (RMSUP

(·) +RMINF
(·))−RM (·).

The above definition captures the intuition behind negation. For example, if an agent
takes an action at a given state and receives the smallest reward for the resulting transition,
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then the agent acting in the opposite task should receive the highest reward for that same
transition. Note how for M ∈M[MINF ,MSUP ], (S,A, P,R¬M , γ) ∈M because R¬M (s, a, s′)
is also bounded by [RMINF

(s, a, s′), RMSUP
(s, a, s′)]. Hence, ¬ is closed inM[MINF ,MSUP ].

Finally, we formalise the interaction of the negation of tasks with the conjunction and
disjunction of tasks as follows:

Proposition 3 (M[MINF ,MSUP ],∨,∧,¬,MSUP ,MINF ) is a De Morgan algebra. ■

We can now specify arbitrary disjunction, conjunction, and negation of tasks.

Example 3 In the bin packing environment, consider the De Morgan lattice bounded by the
tasks where all non-terminal rewards are 0, and all terminal rewards are 0 ( ) for the lower
bound and 1 ( ) for the upper bound. Further consider the specification of two tasks,
and , in which the robot must pack all the red and blue objects into the bin respectively (the
same ones from Example 2). Figure 7 shows the rewards, optimal policies, optimal value
functions, and resulting robot trajectories for sample task compositions. We can observe
how the negation of tasks, and its interaction with the disjunction and conjunction of tasks,
results in composite tasks with desired semantics. For example, the negations ¬ and ¬
specify the tasks in which the robot must remove all red objects and all blue objects from the
bin respectively. Figure 8 shows the De Morgan sub-lattice generated by all combinations of
disjunction, conjunction, and negation of and .

Finally, notice that the task bounds are what define the semantic meaning of the negation
operator, with different task bounds leading to different semantics. For example, when using
the task bounds { , }, the negation of the task in which the robot must pack or unpack all
red objects into (from) the bin ( ) is to pack or unpack exactly half of the red objects into
(from) the bin (¬ = ). However, when using the task bounds { , }, the negation is
instead to pack or unpack all the blue objects into (from) the bin (¬ = ).

3.3 Boolean Task Algebra

While the De Morgan task algebra allows for logical composition of tasks with arbitrary
bounded rewards, it provides no guarantees on certain desired properties. In particular,
these task compositions do not always satisfy the laws of the excluded middle (M1∨¬M1 =
MSUP ), and of non-contradiction (M1 ∧ ¬M1 = MINF ). This can clearly be seen in
Figure 7f, where the agent needs to pack all red objects into the bin and remove all red
objects from the bin and pack all blue objects into the bin and remove all blue objects
from the bin. In this case, the choice of rewards produces a meaningful task—pack exactly
half of the red and blue objects into the bin— but in general, we may want to guarantee
that contradicting task specifications are meaningless. To achieve this, we need to restrict
the set of tasks to those with binary rewards—binary here means the rewards are either
RMINF

(s, a, s′) or RMSUP
(s, a, s′)—which ensures that tasks have a Boolean nature:

M{MINF ,MSUP } := {M = (S,A, P,RM , γ) |RM (s, a, s′) ∈ {RMINF
(s, a, s′), RMSUP

(s, a, s′)}}

We can now formalise a Boolean logic on the set of tasks.

Proposition 4 (M{MINF ,MSUP },∨,∧,¬,MSUP ,MINF ) is a Boolean algebra. ■
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(a) Unpack all red objects from the bin: ¬

(b) Unpack all blue objects from the bin: ¬

(c) Unpack all objects from the bin: −∨ := ¬( ∨ )

(d) Pack only red or only blue objects into the bin: ⊻ := ( ∨ ) ∧ ¬( ∧ )

(e) Pack or unpack all red or blue objects into (from) the bin: ( ∨ ¬ ) ∨ ( ∨ ¬ )

(f) Pack exactly half of the red and blue objects into the bin: ( ∧ ¬ ) ∧ ( ∧ ¬ )

(g) Do nothing: MINF

Figure 7: Terminal rewards (left column heat maps), optimal value functions (middle col-
umn heat maps), optimal policies (middle column arrows), and sample robot trajectories
(left column images) for the lower bound taskMINF and compositions of tasks ( , ) in the
bin packing domain. Optimal policies and value functions are obtained using Q-learning.
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(a) All task compositions of and (b) Hasse diagram

Figure 8: Illustration of the De Morgan sub-lattice with basis { , }. (a) Illustrates how
the rewards for any logical task specification (82 unique ones in this case) can be generated
by simply composing the rewards of the basis tasks, with guaranteed semantics. (b) Shows
the relationship between all the 82 unique tasks that can be specified by composing the red
and blue tasks.

Finally, we summarise the main differences between the developed task algebras in
Table 1. While the Boolean task algebra necessitates the most assumptions, it is also the
most powerful. In the next section, we will show that an additional benefit of Boolean task
algebra is its basis can be obtained directly from the task bounds.
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Assumptions Benefits

Same
environ-
ment

Same
reward
bounds

Binary
rewards

Union
and

intersec-
tion

Negation Full
Boolean
logic

Task lattice ✓ ✓
De Morgan task
algebra

✓ ✓ ✓ ✓

Boolean task
algebra

✓ ✓ ✓ ✓ ✓ ✓

Table 1: Trade-offs between the necessary assumptions and benefits of each lattice structure.

Figure 9: Examples of Boolean task sub-algebra with basis { , }, { , }, { , },
{ , } and task space bounds { , }, { , }, { , }, { , } respectively.

Example 4 In the bin packing domain, consider the Boolean algebra bounded by the tasks
where all non-terminal rewards are 0, and all terminal rewards are 0 ( ) for the lower
bound and 1 ( ) for the upper bound. Consider the specification of two tasks, and , in
which the robot must pack all the red and blue objects into the bin respectively. Unlike before,
their respective rewards are binary for this example: , . Figure 10 shows the rewards,
optimal policies, optimal value functions, and resulting robot trajectories for sample logical
compositions. Note how the binary rewards result in semantically different compositions.
For example, the negation of the task here now means “do not pack all red objects in the
bin”. Also, meaningless compositions like ( ∧ ¬ ) ∧ ( ∧ ¬ ) now produce the lower
bound task , where all states have 0 rewards.

Figure 9 shows the Boolean sub-algebra generated by all logical compositions of { , }
(leftmost), and other examples resulting from different choices of task space bounds and ba-
sis. This illustrates an interesting result: It is not necessary to restrict all transition rewards
to 0 or 1—that is, use the task bounds { , }—to obtain Boolean logic over tasks. As it
turns out, any transition reward can be used as long as they are the transition rewards of
some choice of task bounds. All such rewards are valid, with different task bounds simply
leading to different operator semantics.
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(a) Pack all red objects into the bin:

(b) Pack all blue objects into the bin:

(c) Pack all red or blue objects into the bin: ∨

(d) Pack all red and blue objects into the bin: ∧

(e) Do not pack all red objects into the bin: ¬

(f) Do not pack all blue objects into the bin: ¬

(g) Pack and do not pack all red and blue objects into the bin: ( ∧ ¬ ) ∧ ( ∧ ¬ )

Figure 10: Terminal rewards (left), optimal values and policies (middle) and sample robot
trajectories (right) for the compositions of Boolean tasks in the bin packing domain. Opti-
mal policies and value functions are obtained using Q-learning.
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3.4 Constructing a Basis Set of Tasks

In the previous sections, we demonstrated how lattice structures can formally define the
logical composition of tasks with varying semantics, enabling the specification of new tasks
as compositions of a set of known ones. However, an arbitrary set of tasks may contain
redundant elements—tasks that are compositions of others within the set—which limits the
number of uniquely specifiable tasks and, consequently, the ability to represent every task
in a given task space. Hence, a natural question arises: how can we construct a basis set of
tasks—a minimal set capable of generating every task in the space?

In this section, we show how a Boolean task algebra provides an answer to this question.
To do so, we first establish an equivalence between a Boolean task algebra and a power set
algebra. We note that the assumption of binary rewards induces a bijection F between the
set of tasksM{MINF ,MSUP } and the power-set 2S×A×S , given by:

F : 2S×A×S →M{MINF ,MSUP }

H 7→ (S,A, P,RH, γ), where RH : S ×A× S → R

(s, a, s′) 7→
{
RMSUP

(s, a, s′), if (s, a, s′) ∈ H
RMINF

(s, a, s′), if (s, a, s′) ̸∈ H.
The Boolean task algebra together with the bijection between tasks M{MINF ,MSUP }

and the power-set 2S×A×S gives us the following result:

Proposition 5 The Boolean task algebra on M{MINF ,MSUP } is isomorphic to the power

set Boolean algebra on 2S×A×S . ■

As a consequence, all results that hold for power set Boolean algebras now also hold
for Boolean task algebras. In particular, consider the Boolean algebra on a set of tasksM
where rewards are binary and depend only on a subset of the state space G ⊆ S (such as
Example 4). The corresponding Boolean task algebra is isomorphic to the power set algebra
on G, with the isomorphism F : 2G →M given by:

H 7→ (S,A, P,RH, γ), where RH : S ×A× S → R

(s, a, s′) 7→
{
RMSUP

(s, a, s′), if s ∈ H
RMINF

(s, a, s′), if s ̸∈ H.
This means that for M with finite G, we require only a logarithmic number of basis

tasks (minimal generators) ⌈log2 |G|⌉ (for |G| > 1) to specify an exponential number of
composed tasks |M| = 2|G|. For example, in the bin packing domain with binary rewards
(Example 4), all |M| = 2121 tasks can be specified by composing only ⌈log2 121⌉ = 7 basis
tasks (Figure 11). The following example demonstrates how one can construct such a basis
using a Boolean table.

Example 5 Consider the Four Rooms domain [Sutton et al., 1999], where an agent must
navigate a gridworld to particular rooms. The agent can move in any of the four cardinal
directions at each timestep, but colliding with a wall leaves the agent in the same location.
There is a fifth action for “done” that the agent chooses to achieve goals G (center of a
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Figure 11: Basis (minimal generators) for the Boolean task algebra bounded by { , }.

(a) Four Rooms domain.
The circles indicate goals
the agent must reach (G).

Goals (G) MD MR

top-left 0 0
top-right 0 1
bottom-left 1 0
bottom-right 1 1

(b) Goals labeled by the well
order ≤ given by: top-left

≤ top-right ≤ bottom-left ≤
bottom-right.

Goals (G) MT ML

bottom-right 0 0
bottom-left 0 1
top-right 1 0
top-left 1 1

(c) Goals labeled by the well or-
der ≤ given by: bottom-right

≤ bottom-left ≤ top-right ≤
top-left.

Figure 12: Basis tasks in the Four Rooms domain induced by various well orders on G. Each
column in (b)-(c) represents a basis task, where 0 or 1 for goal g on task M means a reward
of RM (g, a, s′) = RMIN or RM (g, a, s′) = RMAX ∀a ∈ A and s′ absorbing, respectively. The
goal rewards are sufficient to specify the tasks since the non-terminal rewards are RMIN.

room). A goal position only becomes terminal if the agent chooses the done action in it.
The non-terminals rewards are RMIN = −0.1 and the goal rewards (rewards on the terminal
set) are binary (RMIN = −0.1 or RMAX = 2). The discount factor used is γ = 1. Figure 12a
illustrates the layout of the environment and the goals the agent must reach.

We can select a minimal set of generator tasks (basis tasks) by assigning each goal
a binary number, and then using the columns of the table to select the tasks. Since the
set of achievable goals (the terminal set) is finite, this assignment can be done using a
Boolean table. We first assign labels to the individual goals by defining a well order over
the set G. Since there are four goals, the number of basis tasks induced by this well order is
⌈| log2 G|⌉ = 2. Tables 12b-12c illustrates how different well orders on G leads to different
choices of basis tasks. Consider, for example, the well order on G shown in Table 12c. The
basis tasks induced are ML and MT , in which an agent must navigate to the two left rooms
and the two top rooms respectively. Figure 13 shows the rewards and optimal policies of the
tasks specified by some of their logical compositions. Figure 14 shows the Boolean table and
Hasse diagram for all 22

k
= 16 tasks generated by the k = 2 basis, which spans the whole

set of tasks, |M| = 24.
This demonstrates how for any Boolean task algebraM, we can construct a task basis for

it given the reward bounds {RMINF
, RMSUP

} and the subset of states G (or state transitions)
where those reward bounds differ. Interestingly, even in lifelong learning setting where the
agent is not given the reward bounds and full set of goals upfront, it can still gradually learn
these quantities throughout its lifetime while building a basis set of tasks [Tasse et al., 2022].
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(a) ML (b) MT (c) ML ∨MT (d) ML ∧MT (e) ¬ML (f) ML ⊻MT

Figure 13: Compositions of basis tasks {ML,MT } in the Four Rooms domain—where ⊻
represents exclusive disjunction. (top) Rewards for the basis and composed tasks, (bottom)
The optimal policies and value functions obtained using Q-learning.

Well Order
on 4 goal states

𝑀𝐿

𝑀𝑇

𝑀𝐼𝑁𝐹

𝑀𝐿Λ𝑀𝑇

¬𝑀𝐿Λ𝑀𝑇

𝑀𝑇

𝑀𝐿Λ¬𝑀𝑇

𝑀𝐿

𝑀𝐿 ∨ 𝑀𝑇

𝑀𝐿 ∨ 𝑀𝑇

𝑀𝐿 ∨ 𝑀𝑇

𝑀𝐿 ∨ ¬𝑀𝑇

¬𝑀𝐿

¬𝑀𝐿 ∨ 𝑀𝑇

¬𝑀𝑇

𝑀𝐿 ∨ ¬𝑀𝑇

¬𝑀𝐿 ∨ ¬𝑀𝑇

𝑀𝑆𝑈𝑃

0     1     2     3  

3 2

1 0

(a) Boolean table of tasks.

1 1 1 1

𝑴𝑺𝑼𝑷

0 1 0 0

𝑴𝑳Λ¬𝑴𝑻

1 0 0 0

𝑴𝑳 ∨𝑴𝑻

0 0 0 0

𝑴𝑰𝑵𝑭

0 0 0 1

𝑴𝑳Λ𝑴𝑻

0 0 1 0

¬𝑴𝑳Λ𝑴𝑻

1 1 0 0

¬𝑴𝑻

0 1 0 1

𝑴𝑳

1 1 1 0

¬𝑴𝑳 ∨ ¬𝑴𝑻

1 0 0 1

𝑴𝑳 ∨ ¬𝑴𝑻

1 0 1 0

¬𝑴𝑳

0 0 1 1

𝑴𝑻

0 1 1 0

𝑴𝑳 ∨𝑴𝑻

1 0 1 1

¬𝑴𝑳 ∨𝑴𝑻

0 1 1 1

𝑴𝑳 ∨𝑴𝑻

1 1 0 1

𝑴𝑳 ∨ ¬𝑴𝑻

(b) Hasse diagram of the Boolean task algebra.

Figure 14: Boolean table and Hasse diagram for the Four Rooms domain. (a) Illustration
of a well order on G that labels the goals, the induced basis tasks, the Boolean values and
rewards for all 16 compositions of the basis tasks. (b) Relationship between all tasks inM.
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4. World Value Functions

In the previous section, we formally established the logical composition of tasks. The
question now is whether we can leverage knowledge gained in a set of tasks to immediately
solve novel composite tasks in a zero-shot manner. Unfortunately, while we can combine
value functions using pointwise max to solve a disjunction of tasks [van Niekerk et al.,
2019], the conjunction operator poses major problems. For example, Figure 15 shows how
taking the pointwise average [Haarnoja et al., 2018a; van Niekerk et al., 2019] or pointwise
min of standard value functions does not always solve the corresponding task composition.

(a) 0.5(Q∗ +Q∗ ) (b) 0.5(Q∗
¬

+Q∗
¬

)
(c) 0.5

(
0.5(Q∗ +Q∗ )

+
0.5(Q∗

¬
+Q∗

¬
)

)

(d) min{Q∗ , Q∗ } (e) min{Q∗
¬

, Q∗
¬
}

(f) min

{
min{Q∗ ,Q∗ },

min{Q∗

¬
,Q∗

¬
}

}

(g) Q∗
∧

(h) Q∗
¬ ∧¬

(i) Q∗
∧ ∧¬ ∧¬

Figure 15: Consider the four tasks, , ¬ , , and ¬ in the bin packing domain. (a-
c) Approximate conjunction using the pointwise average of their respective optimal Q-
functions, (d-f) approximate conjunction using the pointwisemin of their respective optimal
Q-functions, and (g-i) optimal conjunction learned using Q-learning.
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To understand why, consider two tasks that have multiple different goals, but where
at least one of those goals is common. Clearly, there is a meaningful conjunction between
them—namely, to achieve the common goal. Now consider an agent that learns standard
value functions for both tasks, and which is then required to solve their conjunction with no
further learning. Notice how this is impossible in general, since the standard value function
for each task only represents the value of each state with respect to the best goal. That is,
for all states where the best goal for each task is not the common goal, the agent has no
information about that common goal. The top right corner of Figure 15e shows an example
of how this can lead to incorrect actions.

Hence, for an agent to be capable of solving new tasks without additional learning,
it needs to have gained sufficient information from its experience when learning to solve
previous tasks. Thus, its goal during learning should not be to learn an optimal policy or
standard value function, since it only encodes how to maximise the current task rewards.
Instead, it may need to learn an optimal general value function (GVF) [Sutton et al., 2011]
that encodes how to maximise both the current task rewards as well as all task rewards in
a task space. Precisely, it may need to learn |M| value functions. However, this is clearly
impractical since the number of tasks is potentially infinite (MR for example). Hence, we
introduce a type of general value function called a world value function (WVF) which can
be learned model-free, and for some (but not all) task spaces encodes how to maximise a
sufficient number of task rewards corresponding to reaching all goal states (G) in the envi-
ronment. Veeriah et al. [2018] refers to this kind of knowledge as having “mastery” of the
environment. Precisely, a WVF is a set of |G| ≤ |S| value functions. We will show that
they are sufficient for goal-reaching tasks—a slight generalisation of the shortest path tasks
considered in prior zero-shot composition work [van Niekerk et al., 2019; Nangue Tasse
et al., 2020]—defined as follows:

Definition 7 We define goal-reaching tasks as tasks in a deterministic environment, where
the rewards across tasks differ only at terminal transitions (transitions into absorbing states),
and there exists an optimal policy that always reaches a terminal transition.

Examples of such goal-reaching tasks are discounted tasks (γ ∈ [0, 1)) with zero non-
terminal rewards—such as the bin-packing grid-world examples—and undiscounted tasks
(γ = 1) with strictly negative non-terminal rewards [van Niekerk et al., 2019; Nangue Tasse
et al., 2020]—such as the four-rooms example.

4.1 Theory for World Value Function

Let M = (S,A, P,RM , γ) be a given task from some task space M. We first define the
internal goal space G ⊆ S of an agent as all states where it experiences a terminal transition.
Unlike other goal-conditioned approaches where the goal state to achieve in each episode
is given by the environment, here the agent chooses the goal state it wishes to achieve.
The agent’s aim now is to simultaneously solve the current task, while also learning how to
achieve its own internal goals. To do so, the agent can define its own goal-conditioned reward
function R̄M , which extends RM to penalise itself for achieving goals it did not intend to:

Definition 8 For a task M with reward function RM bounded by [RMIN, RMAX] ⊂ R for
non-terminal transitions, the extended reward function R̄M : S ×G×A×S → R is given by
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R̄M (s, g, a, s′) :=

{
R̄MIN if s′ is absorbing and s ̸= g,

RM (s, a, s′) otherwise,
(1)

where R̄MIN ≤ min{RMIN, (RMIN − RMAX)D} and D is the highest expected number of
timesteps to reach G.5

This new reward function represents the idea that if an agent terminates in a state
(s ∈ G) that is not the goal state it was trying to reach (s ̸= g), it should receive the
smallest reward possible (R̄MIN). Intuitively, the penalty R̄MIN adds one bit of information
to the agent’s rewards, and we will later prove this is sufficient for the agent to learn the
value of achieving its internal goals in a goal-reaching task. The agent must now compute
a world Markov policy π̄ : S × G → Pr(A) that optimally reaches any reachable goal. A
given world policy π̄ is characterised by a world value function defined as follows:

Definition 9 For a task M, the world value function Q̄π̄
M : S × G ×A → R is given by

Q̄π̄
M (s, g, a) := Eπ̄

s

[ ∞∑
t=0

γtR̄M (st, g, at, st+1)

∣∣∣∣s0 = s, a0 = a

]
. (2)

This specifies the expected return obtained by executing a from s, and thereafter follow-
ing π̄ to reach g. Since for each g these WVFs are equivalent to standard value functions,
it follows that all standard results on standard value functions also hold for WVFs by ex-
tension. This can be shown by simply noting that each g ∈ G corresponds to a well defined
MDP Mg := (S,A, P,Rg, γ) with reward function RMg(s, a, s

′) := R̄M (s, g, a, s′). In par-
ticular, we have that there exists an optimal deterministic world policy π̄∗, and unique
optimal WVF Q̄∗

M , such that Q̄∗
M (s, g, a) := Q̄π̄∗

M (s, g, a) = maxπ̄ Q̄
π̄
M (s, g). Similarly to

standard value functions, we want to still be able to extract the standard policy that solves
the current task by acting greedily over action-values: π∗

M (s) ∈ argmaxamaxg Q̄
∗
M (s, g, a).

Theorem 1 shows that this is possible, at least in the case of goal-reaching tasks.

Theorem 1 Let RM , R̄M , Q∗
M and Q̄∗

M be the standard reward function, extended reward
function, optimal value function and optimal world value function respectively for a goal-
reaching task M . Then for all (s, a) in S ×A, we have

RM (s, a, s′) = max
g∈G

R̄M (s, g, a, s′) and Q∗
M (s, a) = max

g∈G
Q̄∗

M (s, g, a).

■

Theorem 1 is critical: despite changing the standard RL objective (the standard reward
function, value function, and policy), an agent can always recover these original objects,
and can also solve the current task by simply maximising over goals. WVFs are therefore a
strict generalisation of regular value functions for this type of task. However, we note that
this is not necessarily true for all other types of tasks. For example, consider a stochastic

5. D = maxs∈S\G,g∈G maxπ E [T (g|π, s)], where T is the number of timesteps required to first reach g from
s under a proper policy π.
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Actions P (g1) P (g2) P (g3) Q̄∗
M (g1) Q̄∗

M (g2) Q̄∗
M (g3) maxg Q̄

∗
M (g) Q∗

a1 0.6 0.2 0.2 0.6 0.2 0 0.6 0.8
a2 0.2 0.6 0.2 0.2 0.6 0 0.6 0.8
a3 0.5 0.5 0.0 0.5 0.5 0 0.5 1

Table 2: Counter example in a stochastic MDP. We omit s and a in the notation for clarity.

MDP with three goal states g1, g2, g3, an initial state w with three actions a1, a2, a3, non-
terminal rewards of 0, and goal rewards of 1, 1, 0 respectively. Table 2 shows the transition
probabilities, WVF at each goal, the maximisation over the WVF, and the regular value
function for each action in state W . Clearly for this task, acting greedily over the WVF is
suboptimal compared to the standard value function.

Having established WVFs as a task-specific general value function, we next prove in
Theorem 2 that those of goal-reaching tasks have mastery—that is, they learn the value of
reaching all achievable goal states in the world. We define mastery as follows:

Definition 10 Let Q̄∗
M be the optimal world value function for a task M inM. Then Q̄∗

M

has mastery if for all g ∈ G reachable from s ∈ S \ G, there exists an optimal world policy
π̄∗(s, g) ∈ argmax

a∈A
Q̄∗

M (s, g, a) that maximises the probability of reaching g from s.

Theorem 2 For all goal-reaching tasks M , Q̄∗
M has mastery. ■

These results are important as they show that a WVF encodes the optimal policy for
the current task (Theorem 1)—meaning that we can henceforth focus only WVFs—while
also encoding the optimal policy for achieving any goal in the environment and the value of
achieving said goals in the current task (Theorem 2)—which will later be useful for zero-shot
composition.

4.2 Learning WVFs

Having formally established WVFs, we now propose ways of learning them using model-
free algorithms. We note that while learning methods in the large body of work on goal-
conditioned value functions can be used to learn WVFs, they require the reward functions
or desired goal states to be available to the learning methods [Kaelbling, 1993; Veeriah et al.,
2018; Andrychowicz et al., 2017; Colas et al., 2019; Foster & Dayan, 2002; Mirowski et al.,
2017; Moore et al., 1999]. Here we wish to learn WVFs only with rewards per state-action
obtained by interacting with the environment. Furthermore, the agent should also learn the
best goal states to achieve for the current task. We hence extend DG learning in the tabular
case [Kaelbling, 1993] and function approximation case [Veeriah et al., 2018] to learn WVFs
with task-dependent reward functions.

4.2.1 Tabular Case

DG learning uses a modified version of Q-learning to learn goal-conditioned action-value
functions from a single stream of experience. The algorithm differs from standard Q-learning
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in several ways: it keeps track of the set of terminating states seen so far (line 6), and at each
timestep updates the goal-conditioned value function with respect to both the current state
and action, as well as all goals encountered so far (lines 7–10). We extend the algorithm
to use the definition of the extended rewards (Equation 1) for the task-dependent rewards
(line 8). The full pseudocode is shown in Algorithm 1.

Algorithm 1: Q-learning for WVFs

Initialise: WVF Q̄(s, g, a) = 0, goal buffer G = {∅}
1 foreach episode do
2 Observe initial state s ∈ S and sample a goal g ∈ G
3 while episode is not done do

4 a←

argmax
a∈A

Q̄(s, g, a) w.p. 1− ε

a random action w.p. ε

5 Execute a, observe reward r and next state s′

6 if s′ is absorbing then G ← G ∪ {s}
7 for g′ ∈ G do
8 r̄ ← R̄MIN if g′ ̸= s and s ∈ G else r

9 Q̄(s, g′, a)
α←−
(
r̄ + γmax

a′
Q̄(s′, g′, a′)

)
− Q̄(s, g′, a)

10 s← s′

4.2.2 Function Approximation Case

Veeriah et al. [2018] modify deep Q-learning in a similar way to Kaelbling [1993] to learn
goal-conditioned values. Their approach differs from standard deep Q-learning in that they
use universal value function approximators (UVFAs) [Schaul et al., 2015], which take both
states and goals as input. Additionally, when a terminal state is encountered, it is added to
the collection of goals seen so far, and when learning updates occur, these goals are sampled
randomly from a goal buffer. Similarly to our extension of DG-learning in the tabular case,
we also extend this approach to use the definition of extended rewards (Equation 1) for
the task-dependent rewards. The full pseudocode is shown in Algorithm 2 in the appendix,
where we note that our approach is agnostic to the learning algorithm used.

4.3 Experiments

In this section, we empirically verify that WVFs can be learned with a single stream of expe-
rience using standard model-free algorithms, and validate their properties described above.

4.3.1 Tabular Case

Consider the bin packing domain introduced in Example 1 where the non-terminal rewards
(rewards for all non-terminal states) are 0 and the goal rewards (rewards for terminal states)
range from 0 to 1. We use a discount factor of γ = 0.95.
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g=(8,1)

g=(2,9)
Q  (s,g,a)
_

Figure 16: Learned WVF for the task of packing all the red objects into the bin. Each
square shows the value of all states (s) with respect to the goal (g) at that position.

Figure 17: Illustrating the standard value function and policy (right) for the task of packing
all the red objects into the bin (left), obtained by maximising over the goal values of the
learned WVF Q̄∗ (middle).

We use Algorithm 1 to train an agent on the task , in which the robot must pack all
the red objects into the bin. Figure 16 shows the learned WVF. The figure is generated by
first plotting the value functions for all goal states, then displaying each of them at their
respective position in the gridworld representation of the domain. We can observe from the
value gradients of the plots that the learned WVF does indeed have mastery as it encodes
how to achieve all desirable goals, demonstrating the results proven in Theorem 2. Notice
how for the goal states corresponding to no red object in the bin (the leftmost column of
the plot), the WVF has zero values everywhere since the agent receives no reward at those
goals. As we proved in Theorem 1, we can also maximise over goals to obtain the standard
state-value function and policy as shown in Figures 17.
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Figure 18: Sample complexity for training WVFs and standard value functions.

By learning WVFs, an agent learns a large number of diverse solutions to a single task.
However, the upfront cost of learning is likely to be higher since we must learn not only the
single value function, but rather the value function with respect to every goal. We investi-
gate the sample complexity of learning WVFs (using Algorithm 1) and learning standard
value functions (using standard Q-learning) in Figure 18. As expected, we observe that the
number of samples required to learn optimal WVFs is greater than that for learning optimal
standard value functions (Figure 18b). Interestingly, we also observe that it is more sample
efficient to learn WVFs if we only care about the performance of the resulting policy instead
of the optimality of the action-values—despite the fact that WVFs have an additional dimen-
sion that must be learned (Figure 18a). We conjecture that this is due to the induced goal-
directed exploration of Algorithm 1, similarly to the results obtained by Kaelbling [1993].

We show in Section 5 how we can leverage the WVFs to improve transfer in a multi-task
setting, which amortises the upfront cost over multiple tasks.

4.3.2 Function Approximation Case

Finally, we demonstrate that our modified learning method can also be used to learn WVFs
in high-dimensional domains where function approximation is required. Consider the same
video game environment as van Niekerk et al. [2019], where an agent must navigate a 2D
world and collect objects of different shapes and colours. The state space is an 84×84 RGB
image, and the agent is able to move in any of the four cardinal directions. The agent also
possesses a pick-up action, which allows it to collect an object when standing on top of
it. There are two shapes (squares and circles) and three colours (blue, beige and purple)
for a total of six unique objects. The positions of the agent and objects are randomised at
the start of each episode. Finally, the rewards are 2 for picking-up a desired object and 0
everywhere else, and the discount factor is γ = 0.95.
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(a) World value function.

(b) Standard value function obtained by
maximising over goals on the WVF.

(c) Sample trajectories of the agent solv-
ing the task, obtained by acting greedily
over the learned WVF.

Figure 19: Learned WVF for the task of collecting blue objects in the video game domain.
The WVF shows the value function with respect to each goal plotted on the same axis.

We train the agent on the Blue task, which requires the agent to navigate to blue
objects and collect them. See appendix B for all the training hyperparameters and neural
network architecture. Figure 19 shows the learned WVF and the result of maximising its
values over goals. To generate the plot, we place the agent at every location and compute
the maximum output of the network over all actions for each goal. We then interpolate
between the points to smooth the graph. We observe that the learned WVF encodes how
to achieve all desirable goals in the environment, even when using function approximation.
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5. Composing World Value Functions

In the previous sections, we formalised the logical composition of tasks, showed how stan-
dard value functions are insufficient to solve them zero-shot, and introduced WVFs as a
richer type of value function that may encode sufficient information about learned tasks to
solve new ones without further learning. In this section we formally show that WVFs of
goal-reaching tasks are indeed sufficient to solve the logical composition of tasks zero-shot.6

We do this by first formalising their composition under the relevant algebraic structures,
just as was done with task compositions. This gives us mathematical tools which can be
used to formally prove zero-shot composition and further explore some additional properties
of the established structures.

5.1 WVF Lattice

Similarly to how we formalised the disjunction and conjunction of tasks using the lattice
algebraic structure, we now formalise the disjunction and conjunction of WVFs. Since
WVFs are real valued functions, a natural partial order on them is pointwise ≤ (the usual
≤ on R). We state the resulting poset formally as follows:

Proposition 6 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let Q̄∗ be the set of
optimal WVFs of tasks in M. Then (Q̄∗,≤) is a partially ordered set with the relation ≤
given by

Q̄∗
M1
≤ Q̄∗

M2
if Q̄∗

M1
(s, g, a) ≤ Q̄∗

M2
(s, g, a) for all (s, g, a) ∈ S × G ×A.

■

Given that all goal-reaching tasks share the same non-terminal rewards, the WVF for
each goal state is partially ordered based only on the terminal reward at that goal state
(since the terminal reward at the other goal states is set to RMIN by the extended reward
function). Hence, since (M,∨,∧) is a lattice based on the usual ≤ over rewards, every
pair of optimal WVFs has a supremum and an infimum in Q̄∗ respectively given by simply
applying pointwise sup and inf :

Proposition 7 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let Q̄∗ be the set of
optimal WVFs of tasks inM. Then for all M1,M2 ∈M,

(i) sup{Q̄∗
M1

, Q̄∗
M2
} = Q̄∗

M1∨M2
∈ Q̄∗, (ii) inf{Q̄∗

M1
, Q̄∗

M2
} = Q̄∗

M1∧M2
∈ Q̄∗. ■

This means that the set of WVFs Q̄∗ forms a lattice (Q̄∗,∨,∧) with ∨ and ∧ given by
Q̄∗

M1
∨ Q̄∗

M2
:= sup{Q̄∗

M1
, Q̄∗

M2
} and Q̄∗

M1
∧ Q̄∗

M2
:= inf{Q̄∗

M1
, Q̄∗

M2
} respectively. We define

these formally as follows:

Definition 11 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let Q̄∗ be the set of
optimal WVFs of tasks in M. The join ∨ : Q̄∗ × Q̄∗ → Q̄∗ and meet ∧ : Q̄∗ × Q̄∗ → Q̄∗

operators are given by the mappings (Q̄∗
M1

, Q̄∗
M2

) 7→ Q̄∗
M1
∨ Q̄∗

M2
and (Q̄∗

M1
, Q̄∗

M2
) 7→ Q̄∗

M1
∧

Q̄∗
M2

respectively, where

6. While we focus on the WVFs of goal-reaching tasks (Definition 7), we leave our proofs as general as
possible, making it clear which parts actually make use of this constraint.
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Q̄∗
M2
∨ Q̄∗

M2
: S × G ×A → R

(s, g, a) 7→ sup{Q̄∗
M1

(s, g, a), Q̄∗
M2

(s, g, a)},

Q̄∗
M1
∧ Q̄∗

M2
: S × G ×A → R

(s, g, a) 7→ inf{Q̄∗
M1

(s, g, a), Q̄∗
M2

(s, g, a)}.

In fact (Q̄∗,∨,∧) forms a distributive lattice, following from the distributivity of inf
and sup on real numbers. We state this as follows:

Proposition 8 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let Q̄∗ be the set of
optimal WVFs of tasks inM. Then (Q̄∗,∨,∧) is a distributive lattice. ■

Given a non-empty finite set O of lower bounded subsets of WVFs N ⊂ Q̄∗, the WVF
lattice (Q̄∗,∨,∧) gives us a principled way of specifying the disjunction of conjunctions:

∨
N∈O

( ∧
N∈N

N

)
(s, g, a) = sup

N∈O

(
inf

N∈N
Q̄∗

N (s, g, a)

)
.

Similarly, given a non-empty finite set O of upper bounded subsets of WVFs N ⊂ Q̄∗,
the conjunction of disjunctions is given by

∧
N∈O

( ∨
N∈N

N

)
(s, g, a) = inf

N∈O

(
sup
N∈N

Q̄∗
N (s, g, a)

)
.

Having established a lattice algebra over tasks and WVFs, we show that there exists
an equivalence between the two. As a result, if we can specify a task under the lattice
algebra, we can immediately obtain the optimal WVF for the task. This homomorphism
follows from the fact that sup{Q̄∗

M1
, Q̄∗

M2
} = Q̄∗

M1∨M2
and inf{Q̄∗

M1
, Q̄∗

M2
} = Q̄∗

M1∧M2
in

Proposition 7.

Theorem 3 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let (Q̄∗,∨,∧) be the
corresponding lattice of WVFs. Let H : M → Q̄∗ be any map from M to Q̄∗ such that
H(M) = Q̄∗

M for all M inM. Then H is a homomorphism. ■

Experiment 5.1 Consider the bin packing domain introduced in Example 1 where non-
terminal rewards are 0 and the goal rewards range from 0 to 1. The discounting is γ = 0.95.

We train an agent on the tasks and , in which the robot must respectively pack
all the red and blue objects into the bin. Figure 20 shows the learned WVFs Q̄∗ and

Q̄∗ together with their disjunction and conjunction. Notice how the composition of WVFs
exhibits the same semantics as that of the corresponding rewards (Figure 6). This highlights
the homomorphism proven in Theorem 3, showing the structural similarity between the task
space and value function space. Finally, Figure 21 shows the Hasse diagram of the WVF
sub-lattice generated by all combinations of disjunction and conjunction of Q̄∗ and Q̄∗ .
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(a) Q̄∗ (b) Q̄∗ (c) Q̄∗ ∨ Q̄∗ (d) Q̄∗ ∧ Q̄∗

Figure 20: Showing the disjunction and conjunction of the learned WVFs (Q̄∗ , Q̄∗ ) in the
bin packing domain. The top row shows the WVFs, and the bottom one shows the value
functions and policies obtained by acting greedily over their values per goal.

Figure 21: Hasse diagram of the WVF lattice generated by Q̄∗ and Q̄∗ .
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5.2 De Morgan WVF Algebra

Having formalised the meaning of disjunction and conjunction, we next formalise the mean-
ing of the negation of WVFs. A De Morgan algebra enables us to define this by adding the
minimal required properties that encapsulate the desired semantics of negation. Specifically,
we assume that the set of tasks is bounded and that the WVF of each task has mastery.
We then define the negation of an WVF as follows:

Definition 12 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching
tasks, and let Q̄∗ be the set of optimal WVFs of tasks in M. Define Q̄∗

INF , Q̄
∗
SUP ∈ Q̄∗

to be the optimal Q̄-functions for the task bounds MINF ,MSUP ∈ M. Then the negation
operator is given by

¬ : Q̄∗ → Q̄∗

Q̄∗ 7→ ¬Q̄∗, where ¬Q̄∗ : S × G ×A → R
(s, g, a) 7→

(
Q̄∗

SUP (s, g, a) + Q̄∗
INF (s, g, a)

)
− Q̄∗(s, g, a).

We now show that the negation of Q̄∗ ∈ Q̄∗ is indeed in Q̄∗ for WVFs with mastery:

Proposition 9 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching
tasks, and let Q̄∗ be the set of optimal WVFs of tasks in M. Then ¬Q̄∗

M = Q̄∗
¬M ∈ Q̄∗ for

all M ∈M. ■

We now formalise the interaction of the negation of WVFs with the conjunction and
disjunction of WVFs as follows:

Proposition 10 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching
tasks, and let Q̄∗ be the set of optimal WVFs of tasks inM. Then (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF )

is a De Morgan algebra. ■

Having established a De Morgan algebra over tasks and WVFs, we show that there
exists an equivalence between the two. As a result, if we can specify a task under the De
Morgan algebra, we can immediately derive the optimal WVF for the task.

Theorem 4 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching tasks,
and let (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF ) be the corresponding De Morgan lattice over WVFs. Let

H :M→ Q̄∗ be any map from M to Q̄∗ such that H(M) = Q̄∗
M for all M in M. Then

H is a homomorphism. ■

Experiment 5.2 Consider the bin packing domain introduced in Example 1. We use the
WVFs learned in Experiment 5.1 for the tasks and . Figure 22 shows the De Morgan
sub-lattice generated by all combinations of their disjunction, conjunction, and negation.
Figure 23 shows sample WVF compositions, and the optimal policies and optimal value
functions obtained from them by maximising over goals. For example, their negations ¬Q̄∗

and ¬Q̄∗ , result in policies in which the agent determines how to unpack all the red and blue
objects from the bin, without further learning. This shows that the negation defined above
does indeed have the expected semantics. The figure also shows that arbitrary disjunction,
conjunction, and negation of WVFs also produce WVFs with the desired semantics.
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(a) Zero-shot WVF compositions (b) Hasse diagram

Figure 22: Illustration of the De Morgan sub-lattice generated by composing Q̄∗ and Q̄∗ .
(a) Illustrates how after learning the WVF for only 2 tasks, we can compose them to solve a
combinatorially large number of unique tasks (82 tasks in this case) without further learning.
(b) Shows the relationship between all the WVFs generated by composing the WVF of the
red and blue tasks.

5.3 Boolean WVF Algebra

While the De Morgan WVF algebra allows us to specify arbitrary disjunction, conjunction,
and negation of WVFs, it does not in general represent the full desired properties of logic.
In particular, the WVF compositions do not always satisfy the laws of the excluded middle
and of non-contradiction. This is because the De Morgan WVF algebra allows for WVFs
obtained from non-Boolean tasks—that is, tasks with non-binary rewards. In this section,
we show that by restricting the WVFs to those of Boolean tasks, we obtain the full logic
on WVFs.
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(a) ¬Q̄∗ (b) ¬Q̄∗ (c) Q̄∗ −∨ Q̄∗ (d) Q̄∗ ⊻ Q̄∗

(e)
(Q̄∗ ∨¬Q̄∗ )

∨
(Q̄∗ ∨¬Q̄∗ )

(f)
(Q̄∗ ∧¬Q̄∗ )

∧
(Q̄∗ ∧¬Q̄∗ )

(g) Q̄∗
MAX (h) Q̄∗

MIN

Figure 23: The learned boundary WVFs (Q̄∗
MAX , Q̄∗

MIN ) and the composition of learned
WVFs (Q̄∗ , Q̄∗ ). The top rows in each figure show the WVFs and the bottom ones show
the value functions and policies obtained by acting greedily over goals.

Proposition 11 Let (M,∨,∧,¬,MSUP ,MINF ) be a Boolean algebra of goal-reaching tasks,
and let Q̄∗ be the set of optimal WVFs of tasks inM.
Then (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF ) is a Boolean WVF algebra. ■
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Having established a Boolean algebra over tasks and WVFs, we show that they are
homomorphic. As a result, if we can specify a task under the Boolean algebra, we can
immediately obtain the optimal WVF for the task.

Theorem 5 Let (M,∨,∧,¬,MSUP ,MINF ) be a Boolean algebra of goal-reaching tasks,
and let (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF ) be the corresponding Boolean algebra of WVFs. Let H :

M→ Q̄∗ be any map from M to Q̄∗ such that H(M) = Q̄∗
M for all M in M. Then H is

a homomorphism. ■

Combining Theorem 5 with the notion of base tasks and task specifications obtained in
Section 3.4, we obtain the much desired super-exponential explosion of skills (see Figure 24).

Experiment 5.3 Consider the simple bin packing domain used in Example 4 where the
goal rewards are restricted to RMIN = 0 or RMAX = 1. The non-terminal rewards are 0 and
the goal rewards are 0 for undesired terminal states and 1 for desired ones. The discounting
used is γ = 0.95.

We train an agent on the tasks and (as described in Example 4), producing the
respective WVFs Q̄∗ and Q̄∗ . We are now able to perform zero-shot composition of any
logical combination of and . This is demonstrated in Figure 25. As usual, we observe
that the WVFs have the same structure as the rewards in the terminal set and encode how to
achieve them. Notice how for the lower bound WVF (the result of meaningless composition),
the optimal policy is to achieve any terminal state (Figure 25f). This is because all terminal
states are equally undesirable (they have the lowest values). Figure 26 shows the Hasse
diagram of the Boolean sub-lattice generated by Q̄∗ and Q̄∗ .
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(a) Number of tasks that can be solved
as a function of the number of existing
tasks solved. Results are plotted on a
log-scale.
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be solved to span all tasks as a function
of number of terminal states. Results
are plotted on a log-scale.

Figure 24: Results in comparison to the disjunctive composition of van Niekerk et al. [2019].
(a) The WVFs allow us to solve exponentially more tasks than the disjunctive approach
without further learning. (b) With WVFs the number of base tasks required to solve all
tasks is logarithmic in the number of achievable goals.
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(a) Q̄∗ (b) Q̄∗ (c) Q̄∗ ∨ Q̄∗ (d) Q̄∗ ∧ Q̄∗

(e) ¬Q̄∗ (f) ¬Q̄∗

(g)
(Q̄∗ ∨¬Q̄∗ )

∨
(Q̄∗ ∨¬Q̄∗ )

(h)
(Q̄∗ ∧¬Q̄∗ )

∧
(Q̄∗ ∧¬Q̄∗ )

Figure 25: The Boolean composition (top row) of learned WVFs in the bin packing domain.
The corresponding value functions and policies in the bottom row are obtained by acting
greedily over their Q-values per goal.

Finally, we show that while optimal WVFs are more expensive to learn than optimal
standard value functions, the trade-off with the compositional explosion of skills justifies
this cost. We demonstrate this in the bin packing domain where we need to learn only
7 base tasks (Figure 27 shows the learned WVFs), as opposed to 121 for the disjunctive
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case (since there are 121 goals). Figure 28 shows results in comparison to the disjunctive
composition of van Niekerk et al. [2019].

Figure 26: Hasse diagram of the Boolean sub-algebra generated by Q̄∗ and Q̄∗ .

Figure 27: Base WVFs (generators) for the full Boolean algebra WVF space
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Figure 28: Cumulative number of samples required to solve tasks in the bin packing domain.
Error bars represent standard deviations over 100 runs, but are small relative to the y-axis.

5.4 Constructing WVFs from Task Goals

In the previous section, we showed that the algebraic structures of tasks and WVFs are
homomorphic. As a result, any task that is specified according to a task algebra can be
immediately solved according to the WVF algebra. In this section we show that for the
case of a Boolean WVF algebra, we can immediately construct optimal WVFs directly from
a set of desired task goals. We do this by showing that the WVF and power set Boolean
algebras are in fact isomorphic. Consider the mapping F between the set of WVFs Q̄∗ and
the power-set P (G), given by

F : P (G)→ Q̄∗

H 7→ Q̄∗
H, where Q̄∗

H : S × G ×A → R

(s, g, a) 7→
{
Q̄∗

SUP (s, g, a), if g ∈ H
Q̄∗

INF (s, g, a), otherwise.

F is clearly an isomorphism between P (G) and Q̄∗, since g ∈ H if and only if Q̄∗
H(s, g

′, a) =
Q̄∗

SUP (s, g
′, a) for all (s, a) ∈ S ×A. This gives us the following important result.

Theorem 6 Let (M,∨,∧,¬,MSUP ,MINF ) be a Boolean algebra of goal-reaching tasks,
and let Q̄∗ be the set of optimal WVFs of tasks in M. Then the Boolean algebra on Q̄∗ is
isomorphic to the Boolean algebra onM. ■

This illustrates how the base knowledge an agent needs to act optimally in an environ-
ment for any future task can be constructed rather than learned (if there is an efficient way
of doing that construction). All that is required to be learned are two WVFs: the lower
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bound WVF Q̄∗
INF and upper bound WVF Q̄∗

SUP . Note how this is true for any cardinality
of G. If G is finite and relatively small, then this can easily be done with a Boolean table.

Experiment 5.4 Consider the Four Rooms domain described in Section 3.4, where an
agent must navigate to the center of particular rooms. The non-terminal rewards are −0.1
and the goal rewards (rewards on the terminal set) are −0.1 for undesirable goals and 2 for
desirable ones. The discount factor used is γ = 1.

Just as in the Boolean task algebra, we can select a minimal set of base WVFs (generator
WVFs) by assigning each goal a binary number, and then using the columns of the table
to generate the WVFs. Since the terminal set is finite, we can do this assignment using a
Boolean table. Similarly to Section 3.4, we label each goal by defining a well order over G.
The number of base WVFs induced are then ⌈| log2 G|⌉ = 2 since |G| = 4. Table 3 illustrates
how different well orders on G leads to different choices of base WVFs.

Consider the well order on G given by Table 3b. The base WVFs induced are Q̄∗
L and

Q̄∗
T which are the WVFs of the tasks ML and MT respectively. Figure 29 illustrates these

WVFs and some of their logical compositions. Note that the resulting optimal value function

Goals Q̄∗
D Q̄∗

R

top-left 0 0
top-right 0 1
bottom-left 1 0
bottom-right 1 1

(a) Goals labelled by the well order ≤ given
by: top-left ≤ top-right ≤ bottom-left

≤ bottom-right.

Goals Q̄∗
T Q̄∗

L

bottom-right 0 0
bottom-left 0 1
top-right 1 0
top-left 1 1

(b) Goals labelled by the well order ≤
given by: bottom-right ≤ bottom-left ≤
top-right ≤ top-left.

Table 3: Base WVFs induced by various well orders on G. Each column represents a
base WVF, where 0 or 1 for goal g on WVF Q̄∗ means respectively WVF of Q̄∗(s, g, a) =
Q̄∗

SUP (s, g, a) or Q̄
∗(s, g, a) = Q̄∗

INF (s, g, a) ∀(s, a) ∈ S ×A.

(a) Q̄∗
L (b) Q̄∗

T (c) Q̄∗
L ∨ Q̄∗

T (d) Q̄∗
L ∧ Q̄∗

T (e) ¬Q̄∗
L (f) Q̄∗

L ⊻ Q̄∗
T

Figure 29: An example of Boolean algebraic composition using the generated WVFs of base
tasks. Arrows represent the optimal action in a given state.
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Well Order
on 4 goal states

Q*𝐿

Q*𝑇

Q*𝐼𝑁𝐹

Q*𝐿ΛQ*𝑇

¬Q*𝐿ΛQ*𝑇

Q*𝑇

Q*𝐿Λ¬Q*𝑇

Q*𝐿

Q*𝐿 ∨ Q*𝑇

Q*𝐿 ∨ Q*𝑇

Q*𝐿 ∨ Q*𝑇

Q*𝐿 ∨ ¬Q*𝑇

¬Q*𝐿

¬Q*𝐿 ∨ Q*𝑇

¬Q*𝑇

Q*𝐿 ∨ ¬Q*𝑇

¬Q*𝐿 ∨ ¬Q*𝑇

Q*𝑆𝑈𝑃

0     1     2     3  

3 2

1 0

(a) Boolean table of base and
composed WVFs.

1 1 1 1

𝑸∗
𝑺𝑼𝑷

0 1 0 0

𝑸∗
𝑳Λ¬𝑸

∗
𝑻

1 0 0 0

𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

0 0 0 0

𝑸∗
𝑰𝑵𝑭

0 0 0 1

𝑸∗
𝑳Λ𝑸

∗
𝑻

0 0 1 0

¬𝑸∗
𝑳Λ𝑸

∗
𝑻

1 1 0 0

¬𝑸∗
𝑻

0 1 0 1

𝑸∗
𝑳

1 1 1 0

¬𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

1 0 0 1

𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

1 0 1 0

¬𝑸∗
𝑳

0 0 1 1

𝑸∗
𝑻

0 1 1 0
𝑸∗

𝑳 ∨ 𝑸
∗
𝑻

1 0 1 1

¬𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

0 1 1 1

𝑸∗
𝑳 ∨ 𝑸

∗
𝑻

1 1 0 1

𝑸∗
𝑳 ∨ ¬𝑸

∗
𝑻

(b) Hasse diagram of the Boolean WVF algebra.

Figure 30: Boolean table and Hasse diagram for the WVFs of tasks in the the four-rooms
domain. (a) A well order on G that labels the goals, the induced base WVFs from labeling
the goals, the logical expressions for all 16 compositions of the base WVFs, their Boolean
values and value functions per goal. (b) The Boolean WVF algebra showing the WVFs for
all 16 tasks inM, together with the Boolean values and logical expressions that generates
them from the base WVFs.

can attain a goal not explicitly represented by the base tasks, such as the bottom-right goal
for the negation. Figure 30 shows the Boolean table and Hasse diagram for all 16 WVFs
generated by them, which spans their respective value spaces.

5.5 Zero-Shot Composition With Function Approximation

In this section, we demonstrate that our compositional approach can also be used to tackle
domains where function approximation is required. In this setting, it is likely that learned
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value functions will be suboptimal owing to generalisation error. However, we show in
Theorem 7 that the simplicity of the lattice algebra operators—supremum for disjunction
and infimum for conjunction—enables disjunctions and conjunctions of ϵ-optimal WVFs
without any decrease in optimality. Furthermore, we show that the negation of an ϵ-optimal
WVF leads to only a constant decrease in optimality.

Theorem 7 Let M be a set of tasks and Q̄∗ the set of optimal WVFs for tasks in M.
Denote ϵQ̄∗

M as the ϵ-optimal WVF for a task M ∈M such that

|Q̄∗
M (s, g, a)− ϵQ̄∗

M (s, g, a)| ≤ ϵ for all (s, g, a) ∈ S × G ×A.

Then for all M1,M2 inM and (s, g, a) in S × G ×A,

(i)

∣∣∣∣∣[Q̄∗
M1
∨ Q̄∗

M2
](s, g, a)− sup

M∈{M1,M2}

ϵQ̄∗
M (s, g, a)

∣∣∣∣∣ ≤ ϵ

(ii)

∣∣∣∣[Q̄∗
M1
∧ Q̄∗

M2
](s, g, a)− inf

M∈{M1,M2}
ϵQ̄∗

M (s, g, a)

∣∣∣∣ ≤ ϵ

(iii)
∣∣¬Q̄∗

M1
(s, g, a)−

[(
ϵQ̄∗

SUP (s, g, a) +
ϵQ̄∗

INF (s, g, a)
)
− ϵQ̄∗

M1
(s, g, a)

]∣∣ ≤ 3ϵ

■
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Figure 31: Learned base tasks for the video game environment. We show WVFs learned
for the blue, and square tasks. The returns are averaged over 10k episodes.
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Experiment 5.5 We use the same video game environment as in Section 4.3, where the
observations are images of the 2D game world and the agent must navigate to collect objects
of different shapes and colours. For each task, the agent receives a reward of 2 when it
collects desired objects and 0 everywhere else. The discount factor used is γ = 0.95. We
first learn to solve two base tasks: collecting blue objects and collecting squares (Figure 31).

We demonstrate composition characterised by (i) disjunction, (ii) conjunction, and (iii)
exclusive-or. This corresponds to tasks where the target items are: (i) blue or square, (ii)
blue squares, and (iii) blue or squares, but not blue squares. Figure 32 illustrates WVFs,
as well as value functions obtained by maximising over goals and sample trajectories for
the respective tasks. We observe that even with function approximation, composition of
WVFs still produces WVFs. That is, the composed WVFs not only lead to optimal value

(a) WVF for disjunction. (b) VF for disjunction. (c) Trajectory for
disjunctive compo-
sition.

Optimal Composed
Tasks

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e 

R
et

ur
ns

(d) Returns for dis-
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(e) WVF for conjunction. (f) VF for conjunction. (g) Trajectories for
conjunction.
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junction.

(i) WVF for exclusive-or
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(j) VF for exclusive-or
composition.
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Figure 32: By composing the WVFs for collecting blue objects and squares, we can act
optimally in new tasks with no further learning. The returns are averaged over 104 episodes.
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functions and trajectories (see their returns in the last column of Figure 32), but still retain
the properties of WVFs, such as mastery.

5.6 Investigating Practical Considerations

The theoretical results presented in this work for zero-shot composition are limited to the
family of goal-reaching tasks defined in Definition 7, which restrict the tasks’ dynamics
(same deterministic transitions across tasks) and non-terminal rewards (same across tasks)
in potentially undesirable ways for current RL algorithms and environments. For example,
while goal-reaching tasks as defined cover a large number of tasks of interest in RL, and
sparse rewards are ideal to avoid reward engineering and misspecification, most current RL
algorithms still require dense rewards to learn in complex environments. Additionally, many
of the current RL environments and benchmarks are designed such that termination only
happens at desirable task goals (instead of any environment goal, for example by having a
done action).

In this section, we investigate whether these theoretical restrictions can be practically
ignored. In particular, we investigate the requirement that tasks share the same determinis-
tic dynamics by having noisy transitions with different terminal transitions, and the impact
of using dense rewards on non-terminal transitions.

5.6.1 Four Rooms Experiments

We use the same setup as the four-rooms experiment outlined in Experiment 5.4, but modify
it in two ways. We first investigate the difference between using sparse and dense rewards.
Our sparse reward function is defined as

rsparse(s, a, s
′) =

{
2 if s′ is absorbing and s is a target task goal,

−0.1 otherwise,

and we use a dense reward function similar to Peng et al. [2019]:

(a) Q̄∗
L (b) Q̄∗

T (c) Q̄∗
L ∨ Q̄∗

T (d) Q̄∗
L ∧ Q̄∗

T (e) ¬Q̄∗
L (f) Q̄∗

L ⊻ Q̄∗
T

Figure 33: An example of Boolean algebraic composition using the learned WVFs with
dense rewards. Top row shows WVFs while bottom one shows resulting value functions and
policies obtained by maximising over goals.
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rdense(s, a, s
′) =

0.1

|G|
∑
g∈G

exp

(
−|s− g|2

4

)
+ rsparse(s, a, s

′). (3)

Using this dense reward function, we again learn to solve the two base tasks MT (centre
of top rooms) and ML (centre of left rooms). We then compose them to solve a variety of
tasks, with the resulting value functions illustrated by Figure 33.

We also modify the domain so that tasks have potentially noisy transitions and need
not share the same terminating states (that is, if the agent enters a terminating state for
a different task, the episode does not terminate and the agent can continue as if it were
a normal state). The transitions are made noisy by adding a slip probability sp when the
agent takes actions in any of the cardinal directions. That is when the agent picks a cardinal
action, with probability 1−sp the agent goes in the direction it chooses and with probability
sp it goes in one of the other 3 chosen uniformly at random. This results in four versions
of the experiment for varying noise levels sp ∈ {0, 0.1, 0.3}:

(i) sparse reward and same terminal set for ML and MT

(ii) sparse reward and different terminal set for ML and MT

(iii) dense reward and same terminal set for ML and MT

(iv) dense reward and different terminal set for ML and MT

We learn WVFs for each of the above setups, and then compose them to solve each of the 24

tasks representable in the Boolean algebra. We measure each composed value function by
evaluating its policy in the sparse reward setting, averaging results over 1000 episodes. The
results are shown in Figure 34. Our results indicate that WVFs learned in the theoretically
optimal manner (sparse reward, same terminal set) are indeed optimal. However, for
the majority of the tasks with potentially noisy dynamics, relaxing the restrictions on ter-
minal transitions and reward functions results in policies that are either identical or very
close to optimal.

5.6.2 Function Approximation Experiments

In this section, we investigate whether we can again loosen some of the restrictive as-
sumptions when tackling high-dimensional, continuous-control environments. We consider
a continuous 3D Four Rooms environment where the ant robot of Duan et al. [2016] must
navigate to the center of specific rooms. The environment is simulated in MuJoCo [Todorov
et al., 2012] with a 29-dimensional continuous state space (representing the position and
velocity of the ant’s joints) and an 8-dimensional continuous action space. Figure 35 shows
a rendered view of the environment.
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(c) Trained with sp = 0.3 for ML and MT , evaluated with sp = 0.3.

Figure 34: Average returns for each of the compositional tasks, and for each variations of
the domain. Results are averaged over 1000 episodes with random start positions.

Since this environment is particularly challenging due to its large state space and the
ant’s nonlinear, highly unstable dynamics, we use dense rewards for non-terminal transi-
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Figure 35: The layout of the MuJoCo Four Rooms domain with a quadruped ant robot.
The spheres indicate goals the agent must reach (center of the two top rooms in this case).

(a) Q̄∗
L (b) Q̄∗

T

Figure 36: Learned base tasks for the MuJoCo environment. We show the trajectories
obtained from the learned WVFs for each base task from different starting states.

tions (Equation 3) to facilitate learning. Additionally, we restrict terminal states to only the
desired ones—specifically, the environment terminates only when the ant is ϵ-close to the
center of a desired room. For training, we employ soft actor-critic with automated entropy
adjustments (SAC-AEA) [Haarnoja et al., 2018b] as the off-policy RL algorithm to learn
world values for each goal (see Appendix B for neural network hyperparameters). We first
train on two base tasks: navigating to the top rooms and navigating to the left rooms. The
resulting trajectories from the learned WVFs are illustrated in Figure 36. Next, we demon-
strate that zero-shot compositions remain valid by showcasing compositions characterized by
disjunction, conjunction, and exclusive-or. The resulting trajectories are shown in Figure 37.

In summary, we have shown that our compositional approach offers strong empirical per-
formance, even when the theoretical assumptions are violated. We have also demonstrated
that our method can also scale to the function approximation setting, and handle both
discrete and continuous state and action spaces. Finally, we expect that, in practice, the
errors due to assumption violations will be far outweighed by the errors due to non-linear
function approximation.
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(a) Q̄∗
L ∨ Q̄∗

T (b) Q̄∗
L ∧ Q̄∗

T (c) Q̄∗
L ⊻ Q̄∗

T

Figure 37: An example of Boolean algebraic composition using the learned WVFs with
dense rewards. We show the trajectories obtained from different starting states.

6. Related Works

In this section, we contextualise our work within three broad areas of related work: logical
composition, goal-conditioned RL, and temporal-logic composition.

6.1 Logical Composition

The compositionality of tasks and value functions was initially established within the frame-
work of linearly-solvable MDPs (LMDPs) [Todorov, 2007], where linear combinations of
value functions were shown to solve disjunctive-like tasks [Todorov, 2009]. Subsequent
works introduced hierarchical extensions of LMDPs to enable multi-level task compositions
[Saxe et al., 2017; Ringstrom et al., 2020; Infante et al., 2022, 2024], although applications
to high-dimensional domains requiring function approximation remained limited.

Building on the ideas from LMDPs, recent works [Haarnoja et al., 2018a; van Niekerk
et al., 2019] have demonstrated that entropy-regularised RL [Fox et al., 2016; Haarnoja
et al., 2017] could similarly support provable forms of composition, with empirical valida-
tions in high-dimensional discrete and continuous domains. In particular, Haarnoja et al.
[2018a] proposed using energy-based models in the entropy-regularised setting to approx-
imate task conjunctions by averaging reward functions, showing that averaging the corre-
sponding optimal value functions yields near-optimal behaviour. Extending these insights,
van Niekerk et al. [2019] further proved that disjunctive task compositions can be solved
zero-shot both in entropy-regularised RL and standard RL under deterministic dynamics.
Beyond zero-shot composition, some works also introduce few-shot approaches to compose
policies similarly to the conjunctive case [Hunt et al., 2019; Peng et al., 2019; Urain et al.,
2023], although generally lacking theoretical guarantees. Adamczyk et al. [2023] later pro-
vides general bounds for the sub-optimality of applying different classes of composition
operators—beyond linear and logical—on both the reward and value functions, which leads
to a reward-shaping approach to learn value functions few-shot. More recently, approaches
based on successor features and generalised policy improvement [Barreto et al., 2017] pro-
vide a framework for few-shot transfer when the reward functions can be well-approximated
as linear combinations of features [Barreto et al., 2018; Borsa et al., 2018; Ma et al., 2020;
Alver & Precup, 2022; Carvalho et al., 2023].

2369



Nangue Tasse, James and Rosman

(a) 0.5(R +R ) (b) 0.5(R¬ +R¬ )
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}

}
Figure 38: Consider four tasks, , ¬ , , and ¬ in the bin packing domain, in which the
robot must respectively pack all the red objects into the bin, remove all the red objects from
the bin, pack all the blue objects into the bin, and remove all the blue objects from the bin.
The top row shows their conjunctions approximated using the average of rewards while the
bottom one shows their true conjunctions using the min of rewards. By averaging rewards,
goal states quickly become equally rewarded, losing the meaning of the true conjunction.

All these works either consider disjunctions and conjunctions of tasks separately, or use
the linear combination of rewards (such as the average for conjunctions) to unify them.
In contrast, we unify these using lattice structures to provably obtain tasks specified as
arbitrary disjunctions, conjunctions, and negations of basis tasks. We also note that while
previous work has used the average reward function to approximate the conjunction operator
[Haarnoja et al., 2018a; Hunt et al., 2019; van Niekerk et al., 2019], tasks specified by
averaging the rewards quickly diverge from the task specified by the min of rewards (the
conjunction). In particular, Figure 38 shows how the average reward task becomes very
different to the min rewards task after only 3 operations. This highlights the importance
of working towards zero-shot composition using the true logical operators, as it enables
multiple arbitrary logical compositions while retaining the meaning of the specified tasks.

6.2 Goal-Conditioned RL

While there is a vast literature on goal-conditioned RL [Colas et al., 2022], the idea of learn-
ing how to achieve all goals in a multi-goal environment from a single stream of experience
was first introduced by Kaelbling [1993] with dynamic goal functions (DGFs). DGFs encode
the distance between states and goals learned by giving an agent minimum rewards at non-
terminal states and maximum rewards at terminal states. While lacking in theory, Kaelbling
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[1993] demonstrated in the tabular case that DGFs learned how to achieve goals significantly
faster than standard value functions. Veeriah et al. [2018] later used UVFAs to extend these
results to the function approximation case, and showed that such goal-conditioned value
functions were also useful as pre-training and auxiliary knowledge for improving sample
efficiency. Another similar work is hindsight experience replay [Andrychowicz et al., 2017],
where an agent also learns to achieve multiple goals to accelerate the learning of a main
task. It is similar to Veeriah et al. [2018] in that it also uses UVFAs for function approxima-
tion, but differs in that it only considers tasks with a single desired goal per episode—given
upfront to the agent by the environment. The agent then learns to achieve the desired goals
faster by also learning how to achieve undesirable ones.

In contrast, WVFs are a principled generalisation of DGFs to the case of arbitrary task
reward functions—by using the extended reward function instead of simply giving an agent
minimum rewards at internal states and maximum rewards at terminal states—which we
show is sufficient for downstream zero-shot composition. WVFs can then be approximated
using suitable function approximators like UVFAs, similarly to how Veeriah et al. [2018]
uses UVFAs to approximate DGFs.

6.3 Temporal-Logic Composition

Finally, while we focus on tasks specified using only logic operators (like ∨,∧,¬), there
is a significant number of works that also consider temporal operators (like NEXT, UNTIL,
EVENTUALLY) for learning and planning [Littman et al., 2017; Yu et al., 2023]. For example,
tasks like ∧¬ NEXT ¬ ∧ , where the agent needs to first pack only red objects into the
bin and then pack only blue objects into the bin. These works often focus on state augmen-
tations and reward shaping for improving sample efficiency [Li et al., 2017; Jothimurugan
et al., 2019; Camacho et al., 2019; Voloshin et al., 2023], or task embeddings for improving
generalisation [Vaezipoor et al., 2021; León et al., 2022; Yalcinkaya et al., 2024]. However,
they assume a given or predefined reward function—commonly binary rewards of 1 for suc-
cessful transitions and zero or −1 for failure transitions. Some recent works also consider
skill composition approaches for improving both sample-efficiency and generalisation [Joth-
imurugan et al., 2021; Araki et al., 2021; Icarte et al., 2022; Furelos-Blanco et al., 2023; Qiu
et al., 2023], however they only consider the temporal composition of sub-tasks and sub-skills
(and not their logical composition). This is commonly done by converting a temporal logic
task specification into a state machine that represents the temporal order of reach-avoid
sub-tasks—specified by Boolean expressions like ∧¬ . These works also assume that the
rewards for said sub-tasks are given or predefined, so that temporally composable sub-skills
can be learned for each sub-task—often through the options framework [Sutton et al., 1999].
Finally, Tasse et al. [2024] recently proposed Skill Machines to achieve both logical and tem-
poral zero-shot composition, but their reward functions are restricted to binary rewards.

In contrast, we provide a framework for obtaining the logical composition of tasks with
arbitrary rewards (and skills for goal-reaching tasks without further learning), with guar-
antees on the semantics of the logic operators. This can then be used in conjunction with
applicable prior works to define sub-task rewards and skills.
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7. Conclusion

We have formalised the logical composition of tasks and value functions using lattice alge-
bras. This enables tasks to be treated algebraically in a similar way to sets in set theory, and
propositions in propositional logic. We also introduced world value functions—a new type
of value function for goal-oriented tasks that encodes more information about solved tasks
than standard value functions. We showed how an agent can learn a diversity of solutions
for each task using these WVFs. This rich knowledge was sufficient to immediately solve
composite tasks. This was achieved by first learning the WVFs, and then composing them
similarly to the composed task. This zero-shot ability combined with the notion of basis
tasks obtained from the task algebra guaranteed a super-exponential explosion of skills.

However, there is much room for improvement. An exciting avenue for future work is to
extend the composition framework beyond the classes of MDPs considered here, such as dif-
ferent environments and partially observable MDPs—since they most accurately model the
case of real-world agents. Another natural avenue for future work is extending the logical
compositions presented here to temporal compositions, potentially leveraging this frame-
work to derive the sub-task rewards and corresponding sub-skills required by temporal-logic
task specification approaches. Extending zero-shot composition to these problems would
therefore make the compositions presented in this work far more applicable in practice.

Hence, our proposed approach is a step towards both interpretable RL—since both the
tasks and optimal value functions can be specified using logic operators—and the ultimate
goal of lifelong learning agents, which are able to solve combinatorially many tasks in a
sample-efficient manner.
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Appendix A. Pseudo-Codes

Algorithm 2: Goal-oriented learning

Input: Off-policy RL algorithm A , number of episodes N , lower-bound extended
reward R̄MIN, discount factor γ

1 Initialise Q̄θ : S × S ×A → R according to A
2 Initialise goal and replay buffers G ← {ω} and D ← ∅ respectively
3 for e← 0 to N do
4 Initialise state s
5 Select a random goal g
6 while s is not terminal do
7 Select action a using the behaviour policy from A : a← π̄θ(s, g)
8 Take action a, observe reward r and next state s′

9 if s is terminal then G ← G ∪ {s} end
10 D ← D ∪ {(s, a, r, s′)}
11 Sample mini-batch of goals G′ ⊆ G and transitions D′ ⊆ D
12 Initialize learning minibatch B ← ∅
13 foreach g′, (s, a, r, s′) ∈ G′ ×D′ do
14 R̄← R̄MIN if g′ ̸= s ∈ G else r /* ERF, Equation 1 */

15 B ← B ∪ {(s, g′, a, R̄, s′)}
16 Update Q̄θ with A using the discount factor γ and minibatch B
17 s← s′

18 return Q̄θ

Appendix B. Additional Training Details

B.1 Function Approximation for the 2D Video Game Environment

To train the world value functions in the 2D video game environment, we use a neural
network with the following architecture:

1. Three convolutional layers: (a) Layer 1 has 6 input channels, 32 output channels,
a kernel size of 8 and a stride of 4. (b) Layer 2 has 32 input channels, 64 output
channels, a kernel size of 4 and a stride of 2. (c) Layer 3 has 64 input channels, 64
output channels, a kernel size of 3 and a stride of 1.

2. Two fully-connected linear layers: (a) Layer 4 has input size 3136 and output size 512
and uses a ReLU activation function. (b) Layer 5 has input size 512 and output size
5 with no activation function.

We use the ADAM optimiser with mini-batch size 32 and a learning rate of 10−4. We
train every 4 timesteps and update the target Q-network every 1000 steps. Finally, we use
ϵ-greedy exploration, annealing ϵ from 1 to 0.01 over 100000 timesteps.

2373



Nangue Tasse, James and Rosman

B.2 Function Approximation for the MuJoCo Four Rooms Environment

To train a world value function in the MuJoCo Four Rooms Environment, we use 2 × |G|
neural networks to represent the policy and value function for each goal. For each goal, we
use the following architectures for the policy and action-value networks:

1. Three fully-connected linear layers for the policy networks: (a) Layer 1 has input size
29 and output size 256 and uses a ReLU activation function. (b) Layer 2 has input
size 256 and output size 256 and uses a ReLU activation function. (c) Layer 3 has
input size 256 and output size 16, representing the mean and standard deviation of
the Gaussian distribution over actions.

2. Three fully-connected linear layers for the action-value networks: (a) Layer 1 has
input size 37 and output size 256 and uses a ReLU activation function. (b) Layer 2
has input size 256 and output size 256 and uses a ReLU activation function. (c) Layer
3 has input size 256 and output size 1 with no activation function.

We use the ADAM optimiser with a learning rate of 10−4.

Appendix C. Proofs of Theoretical Results

C.1 Composing Tasks

Proposition 1 Let M1,M2 ∈ MR be tasks with reward functions RM1 and RM2 respec-
tively. Then (MR,≤) is a partially ordered set with the relation ≤ given by

M1 ≤M2 if RM1(s, a, s
′) ≤ RM2(s, a, s

′) for all (s, a, s′) ∈ S ×A× S.

Proof Follows from the usual ≤ relation on R.

Proposition 2 (MR,∨,∧) is a distributive lattice.

Proof Follows from the properties of inf and sup and their distributivity.

Proposition 3 (M[MINF ,MSUP ],∨,∧,¬,MSUP ,MINF ) is a De Morgan algebra.

Proof Let M1,M2 ∈M[MINF ,MSUP ]. We show that ¬,∨,∧ satisfy the De Morgan algebra
axioms.

(i)–(v): These follow from the properties of inf and sup.

(vi): This follows from the bounds MSUP ,MINF ∈ M[MINF ,MSUP ] which are guaran-
teed to exist by definition.
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(vii): The first condition easily follows from the definition of ¬. For the second condition,
let R¬(M1∨M2) be the reward function for ¬(M1 ∨ M2). Then for all (s, a, s′) in
S ×A× S,

R¬(M1∨M2)(s, a, s
′) = (RMSUP

(s, a, s′) +RMINF
(s, a, s′))− sup

M∈{M1,M2}
RM (s, a, s′)

= (RMSUP
(s, a, s′) +RMINF

(s, a, s′)) + inf
M∈{M1,M2}

−RM (s, a, s′)

= inf
M∈{M1,M2}

(RMSUP
(s, a, s′) +RMINF

(s, a, s′))−RM (s, a, s′)

= R¬M1∧¬M2(s, a, s
′).

Thus ¬(M1 ∨M2) = ¬M1 ∧ ¬M2.

Proposition 4 (M{MINF ,MSUP },∨,∧,¬,MSUP ,MINF ) is a Boolean algebra.

Proof Let M1,M2 ∈ M{MINF ,MSUP }. We show that ¬,∨,∧ satisfy the Boolean algebra
axioms.

(i)–(vi): These follow from the De Morgan task algebra since M{MINF ,MSUP } satisfies its
assumptions.

(vii): Let RM1∧¬M1 be the reward function for M1 ∧ ¬M1. Then for all (s, a, s′) in
S ×A× S,

RM1∧¬M1(s, a, s
′) = inf{RM1(s, a, s

′),

(RMSUP
(s, a, s′) +RMINF

(s, a, s′))−RM1(s, a, s
′)}

=

{
RMINF

(s, a, s′), if RM1(s, a, s
′) = RMSUP

(s, a, s′)

RMINF
(s, a, s′), if RM1(s, a, s

′) = RMINF
(s, a, s′)

= RMINF
(s, a, s′).

Thus M1 ∧ ¬M1 =MINF , and similarly M1 ∨ ¬M1 =MSUP .

Proposition 5 The Boolean task algebra on M{MINF ,MSUP } is isomorphic to the power

set Boolean algebra on 2S×A×S .

Proof This follows from the bijection F and the fact that it is clearly homomorphic.
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C.2 World Value Functions

Theorem 1 Let RM , R̄M , Q∗
M and Q̄∗

M be the standard reward function, extended reward
function, optimal value function and optimal world value function respectively for a goal-
reaching task M . Then for all (s, a) in S ×A, we have

RM (s, a, s′) = max
g∈G

R̄M (s, g, a, s′) and Q∗
M (s, a) = max

g∈G
Q̄∗

M (s, g, a).

Proof
We will omit the task subscript M for better readability. First note that

max
g∈G

R̄(s, g, a, s′) =

{
max{R̄MIN, R(s, a, s′)}, if s′ is absorbing

R(s, a, s′), otherwise.
= R(s, a, s′). (4)

Now define
Q∗

max(s, a) := max
g∈G

Q̄∗(s, g, a).

Let T be the Bellman optimality operator. Then, if s′ ∼ p(·|s, a) is not absorbing, it
follows that

[T Q∗
max] (s, a) =

∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γmax

a′∈A
Q∗

max(s
′, a′)

]
=
∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γmax

a′∈A
max
g∈G

Q̄∗(s′, g, a′)

]
= max

g∈G

∑
s′∈S

p(s′|s, a)
[
R(s, a, s′) + γmax

a′∈A
Q̄∗(s′, g, a′)

]
(Since γ ≥ 0 and the dynamics are deterministic)

= max
g∈G

∑
s′∈S

p(s′|s, a)
[
R(s, g, a, s′) + γmax

a′∈A
Q̄∗(s′, g, a′)

]
(Using Equation 4)

= max
g∈G

Q̄∗(s, g, a)

= Q∗
max(s, a).

Hence Q∗
max is a fixed point of the Bellman optimality operator.

If s′ ∼ p(·|s, a) is absorbing, then

Q∗
max(s, a) = max

g∈G
Q̄∗(s, g, a) = max

g∈G
R̄(s, g, a, s′) = R(s, a, s′) = Q∗(s, a).

Since Q∗
max = Q∗ holds in G and Q∗

max is a fixed point of T , then Q∗
max = Q∗ holds

everywhere.

2376



Composition and Zero-Shot transfer of Tasks

Theorem 2 For all goal-reaching tasks M , Q̄∗
M has mastery.

Proof
Let each g in G define an MDP Mg with reward function

Rg(s, a, s
′) := R̄M (s, g, a, s′)

for all (s, a) in S×A. By Definition 7, there exists an optimal policy that reaches a terminal
transition. Let

π∗
g(s) ∈ argmax

a∈A
Q∗

g(s, a) for all s ∈ S.

be such a policy. If g is reachable from s ∈ S \ {g}, then we show that following π∗
g must

reach g. Assume π∗
g reaches a different goal state g′, with g′ ̸= g. Let πg be a policy that

produces the shortest trajectory to g. Also let Gπ∗
g and Gπg be the returns for the respective

policies. Then,

Gπ∗
g ≥ Gπg

=⇒ G
π∗
g

T−1 +Rg(g
′, π∗

g(g
′), s′) ≥ Gπg ,

where G
π∗
g

T−1 =
T−1∑
t=0

γtRMg(st, π
∗
g(st), st+1)

and T is the time at which g′ is reached.

=⇒ G
π∗
g

T−1 + R̄MIN ≥ Gπg , since g ̸= g′ ∈ G
=⇒ R̄MIN ≥ Gπg −G

π∗
g

T−1

=⇒ (RMIN −RMAX)D ≥ Gπg −G
π∗
g

T−1,

by definition of R̄MIN

=⇒ G
π∗
g

T−1 −RMAXD ≥ Gπg −RMIND,

since Gπg ≥ RMIND

=⇒ G
π∗
g

T−1 −RMAXD ≥ 0

=⇒ G
π∗
g

T−1 ≥ RMAXD.

But this is a contradiction, since the result obtained by following an optimal trajectory up
to a terminal state without the reward for entering the terminal state must be strictly less
than receiving RMAX for every step of the longest possible optimal trajectory. Hence we
must have g′ = g.

C.3 Composing World Value Functions

Proposition 6 Let Q̄∗ be the set of optimal Q̄-value functions for tasks in a set of tasks
M. Then (Q̄∗,≤) is a partially ordered set with the relation ≤ given by
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Q̄∗
1 ≤ Q̄∗

2 if Q̄∗
1(s, g, a) ≤ Q̄∗

2(s, g, a) for all (s, g, a) ∈ S × G ×A.

Proof Follows from the usual ≤ relation on R.

Lemma 1 Let (M,∨,∧) be a lattice of goal-reaching tasks. Also let M1,M2 ∈ M and
g ∈ G with

R̄M1(g, g, π̄
∗
M1

(g, g), s′) ≤ R̄M2(g, g, π̄
∗
M2

(g, g), s′).

Then for all s ∈ S, we have

V̄ ∗
M1

(s, g) ≤ V̄ ∗
M2

(s, g).

Proof

R̄M1(g, g, π̄
∗
M1

(g, g), s′) ≤ R̄M2(g, g, π̄
∗
M2

(g, g), s′)

=⇒ R̄M1(s, g, π̄
∗
M1

(s, g), s′) ≤ R̄M2(s, g, π̄
∗
M2

(s, g), s′) for all s ∈ S,
since the rewards are the same at non-terminal states and R̄MIN at terminal states s ̸= g.

=⇒ Eπ̄∗
M1

[ ∞∑
t=0

γtR̄(st, g, at, st+1)

]
≤ Eπ̄∗

M2

[ ∞∑
t=0

γtR̄(st, g, at, st+1)

]
=⇒ V̄ ∗

M1
(s, g) ≤ V̄ ∗

M2
(s, g).

Proposition 7 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let Q̄∗ be the set of
optimal WVFs of tasks inM. Then for all M1,M2 ∈M,

(i): sup{Q̄∗
M1

, Q̄∗
M2
} = Q̄∗

M1∨M2
∈ Q̄∗, (ii): inf{Q̄∗

M1
, Q̄∗

M2
} = Q̄∗

M1∧M2
∈ Q̄∗.

Proof Let M1,M2 ∈M. Then for all (s, g, a) in S × G ×A,

(i):

Q̄∗
sup(s, g, a) := sup

M∈{M1,M2}
Q̄∗

M (s, g, a)

= sup
M∈{M1,M2}

∑
s′∈S

p(s, a, s′)
[
R̄M (s, g, a, s′) + γV̄ ∗

M (s′, g)
]

=
∑
s′∈S

p(s, a, s′)

[
sup

M∈{M1,M2}
R̄M (s, g, a, s′) + γ sup

M∈{M1,M2}
V̄ ∗
M (s′, g)

]
(Using Lemma 1)

=
∑
s′∈S

p(s, a, s′)
[
R̄M1∨M2(s, g, a, s

′) + γV̄ ∗
M1∨M2

(s′, g)
]
,

Using Lemma 1 since sup
M∈{M1,M2}

R̄M (g, g, π̄∗
M (g, g), s′) defines V̄ ∗

M1∨M2
(s′, g).

= Q̄∗
M1∨M2

(s, g, a).
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=⇒ Q̄∗
sup = Q̄∗

M1∨M2
∈ Q̄∗.

Since Q̄∗
sup is in Q̄∗, it follows from the pointwise ≤ on R that it is the lowest upper

bound of Q̄∗
1 and Q̄∗

2.

(ii): Follows similarly to (i).

Proposition 8 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let Q̄∗ be the set of
optimal WVFs of tasks inM. Then (Q̄∗,∨,∧) is a distributive lattice.

Proof Follows from the distributivity of inf and sup.

Theorem 3 Let (M,∨,∧) be a lattice of goal-reaching tasks, and let (Q̄∗,∨,∧) be the
corresponding lattice of WVFs. Let H : M → Q̄∗ be any map from M to Q̄∗ such that
H(M) = Q̄∗

M for all M inM. Then H is a homomorphism.

Proof Follows from the proof of Proposition 7, which gives

Q̄∗
M1
∨ Q̄∗

M2
= sup{Q̄∗

M1
, Q̄∗

M2
} = Q̄∗

M1∨M2

and
Q̄∗

M1
∧ Q̄∗

M2
= inf{Q̄∗

M1
, Q̄∗

M2
} = Q̄∗

M1∧M2

∀M1,M2 ∈M.

Lemma 2 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching tasks,
and let Q̄∗ be the set of optimal WVFs of tasks in M. Then for all s in S \ G and g in G,
there exists an optimal policy π̄∗ such that

π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M1

(s, g, a) and π̄∗(s, g) ∈ argmax
a∈A

Q̄∗
M2

(s, g, a) ∀M1,M2 ∈M.

Proof Let g ∈ G, s ∈ S−.
If g is reachable from s, then we are done since Q̄∗

M1
and Q̄∗

M2
have mastery.

If g is unreachable from s, then for all (a, s′) in A× S we have

s ̸= g =⇒ R̄M1(s, g, a, s
′) =

{
R̄MIN, if s′ is absorbing

0, otherwise
= R̄M2(s, g, a, s

′)

=⇒ Q̄∗
M1

(s, g, a) = Q̄∗
M2

(s, g, a).
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Proposition 9 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching
tasks, and let Q̄∗ be the set of optimal WVFs of tasks in M. Then ¬Q̄∗

M = Q̄∗
¬M ∈ Q̄∗ for

all M ∈M.

Proof Let T be the Bellman optimality operator. Then, for all (s, g, a) in S × G ×A,

[
T ¬Q̄∗

M

]
(s, g, a) =

∑
s′∈S

p(s, a, s′)

[
R̄¬M (s, g, a, s′) + γmax

a′∈A
¬Q̄∗

M (s′, g, a′)

]

=
∑
s′∈S

p(s, a, s′)

[(
R̄MSUP

(s, g, a, s′) + R̄MINF
(s, g, a, s′)− R̄M (s, g, a, s′)

)
+

γmax
a′∈A

(
Q̄∗

SUP (s
′, g, a′) + Q̄∗

INF (s
′, g, a′)− Q̄∗

M (s′, g, a′)

)]

=
∑
s′∈S

p(s, a, s′)

[(
R̄MSUP

(s, g, a, s′) + R̄MINF
(s, g, a, s′)− R̄M (s, g, a, s′)

)
+

γ

(
max
a′∈A

Q̄∗
SUP (s

′, g, a′) + max
a′∈A

Q̄∗
INF (s

′, g, a′)−max
a′∈A

Q̄∗
M (s′, g, a′)

)]
(Using Lemma 2)

=
∑
s′∈S

p(s, a, s′)

[
R̄MSUP

(s, g, a, s′) + γmax
a′∈A

Q̄∗
SUP (s

′, g, a′)

]
+

∑
s′∈S

p(s, a, s′)

[
R̄MINF

(s, g, a, s′) + γmax
a′∈A

Q̄∗
INF (s

′, g, a′)

]
−

∑
s′∈S

p(s, a, s′)

[
R̄M (s, g, a, s′) + γmax

a′∈A
Q̄∗

M (s′, g, a′)

]
=
(
Q̄∗

SUP (s, g, a) + Q̄∗
INF (s, g, a)

)
− Q̄∗

M (s, g, a)

= ¬Q̄∗
M (s, g, a).

Hence ¬Q̄∗
M is a fixed point of the Bellman optimality operator.

If s ∈ G, then

¬Q̄∗
M (s, g, a) =

(
Q̄∗

SUP (s, g, a) + Q̄∗
INF (s, g, a)

)
− Q̄∗

M (s, g, a)

=
(
R̄MSUP

(s, g, a, s′) + R̄MINF
(s, g, a, s′)

)
− R̄M (s, g, a, s′) = Q̄∗

¬M (s, g, a).

Since ¬Q̄∗
M = Q̄∗

¬M holds in G and ¬Q̄∗
M is a fixed point of T , then ¬Q̄∗

M = Q̄∗
¬M holds

everywhere.

Proposition 10 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching
tasks, and let Q̄∗ be the set of optimal WVFs of tasks inM. Then (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF )

is a De Morgan algebra.
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Proof Let Q̄∗
M1

, Q̄∗
M2
∈ Q̄∗ be the optimal Q̄-value functions for tasks M1,M2 ∈ M with

reward functions rM1 and rM2 . We show that ¬,∨,∧ satisfy the De Morgan algebra axioms
(i) – (vii).7

(i)–(v): These follow from the properties of inf and sup.

(vi): This follows from the bounds Q̄∗
SUP , Q̄

∗
INF ∈ Q̄∗.

(vii): The first condition easily follows from the definition of ¬. For the second condition,
we have that for all (s, g, a) in S × G ×A,

¬(Q̄∗
M1
∨ Q̄∗

M2
)(s, g, a) = (Q̄∗

SUP (s, g, a) + Q̄∗
INF (s, g, a))− sup

M∈{M1,M2}
Q̄∗

M (s, g, a)

= (Q̄∗
SUP (s, g, a) + Q̄∗

INF (s, g, a)) + inf
M∈{M1,M2}

−Q̄∗
M (s, g, a)

= inf
M∈{M1,M2}

(Q̄∗
SUP (s, g, a) + Q̄∗

INF (s, g, a))− Q̄∗
M (s, g, a)

= (¬Q̄∗
M1
∧ ¬Q̄∗

M2
)(s, g, a).

Theorem 4 Let (M,∨,∧,¬,MSUP ,MINF ) be a De Morgan lattice of goal-reaching tasks,
and let (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF ) be the corresponding De Morgan lattice over WVFs. Let

H :M→ Q̄∗ be any map from M to Q̄∗ such that H(M) = Q̄∗
M for all M in M. Then

H is a homomorphism.

Proof This follows from the proof of Proposition 9 and the homomorphism between the
task and WVF lattices.

Proposition 11 Let (M,∨,∧,¬,MSUP ,MINF ) be a Boolean algebra of goal-reaching tasks,
and let Q̄∗ be the set of optimal WVFs of tasks inM.
Then (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF ) is a Boolean WVF algebra.

Proof
Let Q̄∗

M1
, Q̄∗

M2
∈ Q̄∗ be the optimal Q̄-value functions for tasks M1,M2 ∈ M with

reward functions rM1 and rM2 . We show that ¬,∨,∧ satisfy the Boolean algebra axioms (i)
– (vii) stated in Definition 4.

(i)–(vi): These follow from the De Morgan WVF algebra since Q̄∗ satisfies its assumptions.

(vii):

Q̄∗
M1
∧ ¬Q̄∗

M1
= Q̄∗

M1
∧ Q̄∗

¬M1
(Proposition 9)

= Q̄∗
M1∧¬M1

(Theorem 3)

= Q̄∗
INF (Proposition 4).

7. The De Morgan algebra axioms are stated in Definition 3.
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Similarly, Q̄∗
M1
∨ ¬Q̄∗

M1
= Q̄∗

SUP .

Theorem 5 Let (M,∨,∧,¬,MSUP ,MINF ) be a Boolean algebra of goal-reaching tasks,
and let (Q̄∗,∨,∧,¬, Q̄∗

SUP , Q̄
∗
INF ) be the corresponding Boolean algebra of WVFs. Let H :

M→ Q̄∗ be any map from M to Q̄∗ such that H(M) = Q̄∗
M for all M in M. Then H is

a homomorphism.

Proof Follows from the homomorphism between the De Morgan task and WVF algebras.

Theorem 6 Let (M,∨,∧,¬,MSUP ,MINF ) be a Boolean algebra of goal-reaching tasks,
and let Q̄∗ be the set of optimal WVFs of tasks in M. Then the Boolean algebra on Q̄∗ is
isomorphic to the Boolean algebra onM.

Proof This follows from the isomorphism between Q̄∗ and P (G), and that between P (G)
andM.

Theorem 7 LetM be a set of tasks and Q̄∗ the set of optimal Q̄-value functions for tasks
inM. Denote ϵQ̄∗

M as the ϵ-optimal Q̄-value function for a task M ∈M such that

|Q̄∗
M (s, g, a)− ϵQ̄∗

M (s, g, a)| ≤ ϵ for all (s, g, a) ∈ S × G ×A.

Then for all M1,M2 inM and (s, g, a) in S × G ×A,

(i)

∣∣∣∣∣[Q̄∗
M1
∨ Q̄∗

M2
](s, g, a)− sup

M∈{M1,M2}

ϵQ̄∗
M (s, g, a)

∣∣∣∣∣ ≤ ϵ

(ii)

∣∣∣∣[Q̄∗
M1
∧ Q̄∗

M2
](s, g, a)− inf

M∈{M1,M2}
ϵQ̄∗

M (s, g, a)

∣∣∣∣ ≤ ϵ

(iii) ifM is bounded then,∣∣¬Q̄∗
M1

(s, g, a)−
[(

ϵQ̄∗
SUP (s, g, a) +

ϵQ̄∗
INF (s, g, a)

)
− ϵQ̄∗

M1
(s, g, a)

]∣∣ ≤ 3ϵ

Proof

(i): ∣∣∣∣∣[Q̄∗
M1
∨ Q̄∗

M2
](s, g, a)− sup

M∈{M1,M2}

ϵQ̄∗
M (s, g, a)

∣∣∣∣∣
=

∣∣∣∣∣ sup
M∈{M1,M2}

Q̄∗
M (s, g, a)− sup

M∈{M1,M2}

ϵQ̄∗
M (s, g, a)

∣∣∣∣∣
≤ sup

M∈{M1,M2}

∣∣Q̄∗
M (s, g, a)− ϵQ̄∗

M (s, g, a)
∣∣

≤ ϵ
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(ii): ∣∣∣∣[Q̄∗
M1
∧ Q̄∗

M2
](s, g, a)− inf

M∈{M1,M2}
ϵQ̄∗

M (s, g, a)

∣∣∣∣
=

∣∣∣∣ inf
M∈{M1,M2}

Q̄∗
M (s, g, a)− inf

M∈{M1,M2}
ϵQ̄∗

M (s, g, a)

∣∣∣∣
≤ inf

M∈{M1,M2}

∣∣Q̄∗
M (s, g, a)− ϵQ̄∗

M (s, g, a)
∣∣

≤ ϵ

(iii): LetM be bounded. Then,∣∣¬Q̄∗
M1

(s, g, a)−
(
ϵQ̄∗

SUP (s, g, a) +
ϵQ̄∗

INF (s, g, a)
)
− ϵQ̄∗

M1
(s, g, a)

∣∣
= |
(
Q̄∗

SUP (s, g, a) + Q̄∗
INF (s, g, a)

)
− Q̄∗

M1
(s, g, a)−(

ϵQ̄∗
SUP (s, g, a) +

ϵQ̄∗
INF (s, g, a)

)
− ϵQ̄∗

M1
(s, g, a)|

= |
(
Q̄∗

SUP (s, g, a)− ϵQ̄∗
SUP (s, g, a)

)
+
(
Q̄∗

INF (s, g, a)− ϵQ̄∗
INF (s, g, a)

)
+(

ϵQ̄∗
M1

(s, g, a)− Q̄∗
M1

(s, g, a)
)
|

≤
∣∣Q̄∗

SUP (s, g, a)− ϵQ̄∗
SUP (s, g, a)

∣∣+ ∣∣Q̄∗
INF (s, g, a)− ϵQ̄∗

INF (s, g, a)
∣∣+∣∣ϵQ̄∗

M1
(s, g, a)− Q̄∗

M1
(s, g, a)

∣∣
≤ 3ϵ
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Heuillet, A., Couthouis, F., and Dı́az-Rodŕıguez, N. Explainability in deep reinforcement
learning. Knowledge-Based Systems, 214:106685, 2021.

Hunt, J., Barreto, A., Lillicrap, T., and Heess, N. Composing entropic policies using diver-
gence correction. In Proceedings of the International Conference on Machine Learning,
volume 97, pp. 2911–2920. PMLR, 2019.

Icarte, R. T., Klassen, T. Q., Valenzano, R., and McIlraith, S. A. Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial
Intelligence Research, 73:173–208, 2022.
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