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Abstract

In this work, we consider the problem of procedural content generation for video game
levels. Prior approaches have relied on evolutionary search (ES) methods capable of gener-
ating diverse levels, but this generation procedure is slow, which is problematic in real-time
settings. Reinforcement learning (RL) has also been proposed to tackle the same problem,
and while level generation is fast, training time can be prohibitively expensive. We propose
a framework to tackle the procedural content generation problem that combines the best
of ES and RL. In particular, our approach first uses ES to generate a sequence of levels
evolved over time, and then uses behaviour cloning to distil these levels into a policy, which
can then be queried to produce new levels quickly. We apply our approach to a maze game
and Super Mario Bros, with our results indicating that our approach does in fact decrease
the time required for level generation, especially when an increasing number of valid levels
are required.

1 Introduction

Procedural content generation (PCG) is used in a wide range of applications, ranging from
testing autonomous robot software [1] to the generation of video game levels [3]. With a
specific focus on video game design, PCG allows for automatic generation of various aspects of
the game, such as level and terrain design [6]. As such, it is a powerful tool that can be used
by designers to generate more content using fewer resources.

One of the most common ways of implementing PCG is through the use of evolutionary
search, and more specifically genetic algorithms (GAs) [4]. GAs are particularly advantageous
when it comes to level generation, since they have the ability to create diverse levels. However,
GAs generate their results by intelligently modifying a population of candidate solutions until
a suitable one is found. They are therefore often slow to generate a playable level, which may
be problematic when real-time generation is required.

A more recent approach to procedurally generating video game levels is reinforcement learn-
ing (RL) [14], which frames the creation of a level as a sequential decision process and learns a
policy that produces a sequence of actions to transform an initial randomly generated level into
one that is playable and interesting [6]. Unfortunately, RL requires a reward function specified
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by a human designer to guide learning, and usually requires significant amounts of training time
before a suitable level can be created. However, after a model has been trained, the generation
of levels is fast.

In this work, we explore the possibility of combining ideas from both ES and RL to inherit
the best of both methods. In particular, ES is capable of generating multiple diverse levels,
while RL is capable of generating a single level quickly. We therefore propose an approach that
learns a policy using the levels generated by ES, effectively distilling the results of ES into a
policy that can be queried to generate new levels quickly. Importantly, these policies can be
constructed without the extensive training time required by prior work [6].

We demonstrate our approach in a Maze game, as well as Super Mario Bros., where re-
sults indicate that our approach is able to generate playable levels significantly faster than the
competing GA.

2 Background

In this section, we discuss genetic algorithms and reinforcement learning, two optimisation
techniques that have been used in the literature to develop PCG systems.

2.1 Genetic Algorithms

Genetic algorithms (GAs) seek to optimise a population of candidate solutions. Each individual
in the population encodes a particular solution using a genetic representation, or gene. Indi-
viduals are evaluated using a fitness function, which is a task-specific function that evaluates
the performance of an individual, and is used to decide how they should be modified.

There are several operators that can be applied to the population in order to increase
the fitness of the individuals. The most common of these are crossover, where two high-
performing (according to the fitness function) individuals are combined to form new individuals,
and mutation, where an individual’s gene is perturbed to encourage exploration of the solution
space. Crossover and mutation are illustrated by Figure 1.

Starting with an initial randomly generated population, GAs modify the population to pro-
duce new individuals. Each iteration results in a new generation of candidate solutions, which
are created using the above operations, and also often inherit the top performing individuals
from the previous generation in a concept known as elitism. The GA continues for a given
number of generations, or until individuals surpass some predefined fitness threshold.

2.2 Reinforcement Learning

In reinforcement learning (RL), an agent interacts with an environment in an attempt to solve
a given task in a trial-and-error fashion. Typically, an environment is modelled as a Markov
decision process ⟨S,A, P,R, γ⟩, where (i) S is the state space; (ii) A is the set of actions available
to an agent; (iii) P (s′|s, a) is the transition dynamics, specifying the probability of an agent
finding itself in state s′ after executing action a from state s; (iv) R(s, a) is the reward function
that specifies the reward an agent receives for executing action a in state s; and (iv) γ ∈ [0, 1)
is used to discount future rewards.

An agent interacts with its environment through a policy π, which maps states to actions.
The utility of a given policy can be quantified by its value function, which captures the expected
future rewards following π:

78



PCG with Evolutionary Search and Behaviour Cloning Muir and James

Generation N+1

Crossover 
point

Crossover 
point

Crossover

Mutation

Generation N

Figure 1: Illustration of crossover and mutation. Here, solutions are encoded as binary strings.
The top row illustrates 2-point crossover, where two genes (red and green) are combined to
create two new individuals. The bottom row illustrates mutation, where the genes of the blue
individual are perturbed (by flipping a small number of its bits) to produce a new individual.

vπ(s) = Eπ

[ ∞∑
t=0

γtr(st, at)|st = s

]
.

The aim of an agent is to discover an optimal policy π∗, such that π∗ ∈ argmax
π

vπ(s) for all s in

S. This is often achieved through planning approaches such as policy iteration [5], or learning
approaches such as Q-learning [17].

2.2.1 Learning from Demonstration

An alternate approach to compute a policy relies on an agent having access to the transition
data of another agent, consisting of trajectories {s0, a0, s1, a1, . . . , an−1, sn}.

If these trajectories are generated by an expert, then an agent can use behaviour cloning to
mimic the expert to learn a direct mapping between states and actions. This can be achieved by
constructing a dataset X = {si}n−1

i=0 with associated labels Y = {ai}n−1
i=0 and then applying any

appropriate supervised learning method to train a model to predict Y given X. Once trained,
this model can then be used directly as a policy, avoiding the need to learn a value function or
policy from reward signal alone.

3 Related Work

While there have been many approaches to PCG, evolutionary methods are perhaps the most
popular [15, 13]. For example, [4] use a simple genetic algorithm to generate video game levels,
while [8] use a two-population genetic algorithm. This ensures that a high number of playable
levels is generated by maintaining separate populations of feasible (playable) and non-feasible
levels. Diverse levels are also encouraged through the use of novelty-based fitness functions
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[7]. However, game-specific knowledge is also injected to repair unplayable levels, limiting its
general applicability.

There has also been work on PCG that leverages the generalisability of neural networks. For
example, [10] represent each collectable game item by a neural network, the weights and struc-
ture of which is evolved with a genetic algorithm, while [16, 12] train a generative adversarial
network (GAN) on a collection of existing game levels. They then use evolutionary methods
to search for a latent input vector to this GAN to generate a level. However, these approaches
require significant amounts of training data and are biassed towards existing levels, which may
be undesirable should new and interesting levels be required.

Finally, [6] frame the problem of level generation as a Markov decision process, and use
standard RL techniques to learn a policy that generates new levels. Here, actions involve
changing a single tile of a 2D map. After to training, generation is fast, and their approach
does not rely on prior training data. However, the approach requires a handcrafted reward
function, and the training time is extensive (on the order of 100 million timesteps), which is
limiting in more complex environments.

4 Genetic Algorithms with Behaviour Cloning for PCG

In Section 2, we described two approaches that have previously been used for PCG. GAs have
been shown to be capable of generating interesting playable levels [4], but the search procedure
must be executed whenever a new level is required. By contrast, a policy learned through
RL can generate new levels quickly, but the training of such policies is complex and time-
consuming. Policies can also be computing from demonstration data, but this assumes access
to expert trajectories, which is not often the case.

In this section, we describe a novel framework for PCG that addresses the above issues.
The main idea here is to execute a GA to generate levels, and then treat the data generated
during the search procedure as the output of an “expert” to which behaviour cloning can be
applied. As a result, our approach produces a policy that can be used to generate new levels
quickly, while avoiding the requirement for expensive training or complex, handcrafted reward
functions.

In the rest of this paper, we will limit ourselves to 2D tile-based games, where a level is
made up of a grid of 2D tiles or cells, each of which takes a specific type (e.g., empty, obstacle,
etc). Similarly to [6], an action is represented as the tuple ⟨x, y, t⟩, which indicates that the tile
at location (x, y) should be modified to type t.

4.1 Phase 1: Evolutionary Search

We first implement a GA similarly to [11] to generate playable levels. The initial population
consists of randomly generated levels, which subsequently undergo both crossover and mutation
to create the next generation. We also use elitism, retaining a number of high-performing
individuals from the previous population. After each new generation is formed, we consider
the top levels (according to the fitness function) and determine whether they have reached an
“acceptable” threshold of performance. If this is the case, the GA terminates, but otherwise
continues until a sufficient number of “acceptable” levels have been created. This process is
illustrated by Figure 2.
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Figure 2: The process of generating a set of playable levels using a GA. The GA continues until
it has produced a sufficient number of levels whose fitness exceeds some threshold.

4.2 Phase 2: Policy Creation through Behaviour Cloning

The output of Phase 1 is a set of playable levels, as well as the random levels that were initially
created. We consider all initial and final levels, and compute the changes in tiles necessary to
transform an initial level into the final one. To generate the data that will be used to fit a
policy, we consider each start level Si, end level Ei and set of changes between the two ∆i.
Note that because of our action formulation, ∆i is equivalently a sequence of actions necessary
to transform Si into Ei.

We then follow the approach in Algorithm 1 to generate the data. This begins using the
state of the initial level, s0 and computing the first action from ∆i to apply, a0. The tuple
(s0, a0) is saved to a buffer, and a0 is applied to s0 to produce a new state s1. This process is
repeated until all actions in ∆i have been applied. All of the above is applied to each start and
end level to produce a set of state-action pairs that implicitly represents a policy.

Algorithm 1 Build policy dataset

Require: InitialLevels← initial randomly generated levels
Require: FinalLevels← final levels generated by GA

Changes← ∅
for all (Si, Ei) ∈ InitialLevels× FinalLevels do

s← State(Si)
∆← ComputeDiffs(Si, Ei) ▷ difference in tiles between start and end levels
for all a ∈ ∆ do

Changes← Changes ∪ {(s, a)}
s← NextState(s, a)

Return Changes

4.3 Phase 3: Policy Execution

To generate a new level, we begin with a randomly created one and must apply our policies,
computed in the previous phase, to produce a playable level. One issue is that our policy should
generalise to unseen states, and while there are many approaches to doing so, here we use a
simple approach based on the nearest neighbours algorithm, implemented in scikit-learn [9].

Given an initial randomly generated state, the policy is applied as follows. First, the state
is passed to the nearest neighbour algorithm to find the most similar state observed in Phase 2.
The action corresponding to this state is then returned and executed. However, in practice we
found that applying a single action to the state does not change it significantly; as a result, the
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policy may find itself applying the same action in an infinite loop, since the nearest neighbour
algorithm continues to return the same state.

We therefore take inspiration from prior work [2] and execute several actions in sequence
before computing the next state. This can be seen as executing a temporally extended action
for n timesteps. Since the buffer created in the previous phase is sequential, we simply execute
action ai, and then subsequently ai+1, . . . ai+n. In practice, instead of using a fixed value of
n, we instead use hyperparameter p, which represents the proportion of the total changes that
should be made, |∆i|, and compute n = |∆i|/p.

The above process is repeated until one of two conditions are met: either a maximum number
of steps is reached, or an acceptable level (according to the fitness function) is generated. In the
former case, the algorithm restarts with a new random level. This entire procedure is illustrated
by Figure 3.
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Policy execution

Randomly
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Figure 3: Applying our policy to transform an initial random level into a playable one.

5 Experiments

We apply our framework to two tile-based environments: a Maze domain, where an agent is
required to navigate from the top left to the botton right of a maze consisting of free space and
walls, and the video game Super Mario Bros. We use the amidos2006 Mario AI framework1

to generate Super Mario Bros levels of size 101 × 16 tiles and to evaluate the fitness of these
levels.

5.1 Maze Domain

We use the Maze domain as a test-bed with which to validate our framework. A Maze level is
considered “playable” if there exists a valid path from the top left to the bottom right corner.
Maze levels are generated by randomly placing walls within the bounds of the maze, and a
given level is represented by the xy-coordinates of each wall.

1https://github.com/amidos2006/Mario-AI-Framework
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Fitness function The fitness function for the generated mazes takes into account whether
or not the level is playable, the spread of blocks within the maze, and the length of the shortest
path from the start to the goal. The first component ensure the maze is solvable, while the
second favours mazes with an equal spread of vertical and horizontal walls. Finally, longer
optimal solutions are given higher fitness to promote difficult, interesting mazes. The exact
fitness function is

f(x) = 0.7× Finishable+ 0.2×RatioX + 0.2×RatioY + 0.0001× PathLength

where (i) Finishable is 1 if a solution exists, and 0 otherwise; (ii) RatioX is the number of walls
in the left half of the level divided by the total number of walls; (iii) RatioY is the number of
walls in the top half of the level divided by the total number of walls; and (iv) PathLength is
the length of optimal path. We apply the framework described in Section 4 to the Maze domain
with the hyperparameters and experimental settings described in Table 1.

Hyperparameter Description Value

Initial population size Number of levels to be generated and evaluated for initial
batch of levels

50

Size of child list Size of list of levels with the best fitnesses to determine
whether to terminate

20

Crossover points Number of segments each chromosome should be split for
crossover

50

Mutation rate Percentage of chromosome to mutate 0.05
Maximum iterations Maximum number of iterations for genetic algorithm 1000
p Parameter that controls the length of the temporally ex-

tended action
0.06

D Size of the mazes 10 – 50
Number of walls Number of walls for in each level 0.15D2

Table 1: Maze domain hyperparameters and experimental settings.

We evaluate our approach against a genetic algorithm to determine the time taken to gen-
erate the same number of playable levels. We first note that even though the policy is created
from levels generated by a GA, the final levels differ between the two approaches. Figures 4
and 5 illustrate a subset of these levels.

Figure 4: Maze levels of size 20 × 20 generated by a genetic algorithm. Purple indicates the
optimal path from the start to the goal location.
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Figure 5: Maze levels of size 20× 20 generated by our approach. Purple indicates the optimal
path from the start to the goal location.

Our initial tests indicated that applying behaviour cloning to the output of a GA that
terminates when at least one individual passes the threshold resulted in poor performance.
However, when at least half of the GA’s individuals were deemed acceptable (i.e. 50% of the
final generation had a fitness greater than the threshold), applying our approach resulted in
good performance. Moreover, when requiring that the final generation of the GA consist of
only acceptable levels, our approach vastly outperforms it, especially as the size of the Maze
level increases. Figure 6 illustrates that increasing the quality of the GA’s output has a positive
effect on our framework. The results also indicate that our method is able to better scale to
larger domains when compared to GAs.
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(a) Maze generation with 50% acceptable levels
produced by the GA.
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(b) Maze generation with 100% acceptable levels
produced by the GA.

Figure 6: A wall-clock comparison of our approach with a genetic algorithm on the Maze domain
of various sizes. Lower is better. Mean and standard deviation over 10 random seeds are shown.

5.2 Super Mario Bros Domain

We now apply our framework to a significantly more challenging video game environment. In
Super Mario Bros., the agent traverse the level from left to right while avoiding enemies and
obstacles. Since there are multiple tile types, each level is represented by the xy-position of
each tile, as well as its specific type. To generate a random level, we randomly place tiles within
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the level, but assign higher probability to “air” tiles (which can be passed through) to assist
the GA in producing playable levels. A randomly generated level is illustrated by Figure 7.

Figure 7: Randomly generated Super Mario Bros level.

Fitness function For Super Mario Bros, we implement a fitness function that includes
whether the agent timed out, won or lost the current level (based on behaviour generated
by amidos2006 Mario AI). The fitness function also includes the percentage of the level the
agent was able to complete before the end state, and the agent’s state (whether the agent
acquired upgrades within the level). Specifically, the fitness function is

f(x) = WinState+ 2× CompletionPercentage+ 0.5×MarioState,

where (i) WinState takes the value 0.1 if a timeout occurs, 0.4 if the agent loses and 1 if it
succeeds; (ii) CompletionPercentage is the percentage of the screen the agent is able to traverse
to the right; and (iii) MarioState is 1 if any power-ups were collected, and 0 otherwise.

We apply or approach to Super Mario Bros with the hyperparameters and experimental
settings described in Table 2.

Hyperparameter Description Value

Initial population size Number of levels to be generated and evaluated for initial
batch of levels

100

Size of child list Size of list of levels with the best fitnesses to determine
whether to terminate

20

Crossover points Number of segments each chromosome should be split for
crossover

101

Mutation rate Percentage of chromosome to mutate 0.05
Maximum iterations Maximum number of iterations for genetic algorithm 1000
p Parameter that controls the length of the temporally ex-

tended action
0.05

Table 2: Super Mario Bros hyperparameters and experimental settings.

As in the Maze domain, we again note that there is a large difference between the output
of the GA and our approach, despite the latter being trained on levels produced by the former.
This is illustrated by Figures 8 and 9.

Finally, we quantitatively compare our approach to a GA to measure how long it takes to
generate a given number of playable levels. The results in Figure 10 clearly indicate that once a
policy has been trained on the output of a GA, the creation of subsequent levels is significantly
faster than repeatedly executing the GA to produce more levels.
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Figure 8: Super Mario Bros level generated by a genetic algorithm.

Figure 9: Super Mario Bros level generated by our approach.

6 Conclusion

We have proposed an approach to procedural content generation for video games that relies on
a combination of evolutionary search and behaviour cloning. Our approach allows an agent to
derive a policy capable of generating new levels quickly, without the need for expensive training
or complex, handcrafted reward functions. Our results on two domains, including a complex
video game, indicate that our approach outperforms genetic algorithms.

Our framework is agnostic to the exact details of both the genetic algorithm and the method
of behaviour cloning. We adopted a simple, näıve approach here, but promising future work
would be to incorporate more sophisticated algorithms and techniques, such as deep neural
networks and more advanced search strategies. More generally, the combination of evolutionary
search with reinforcement may be a productive avenue for deploying PCG in the real world.
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Figure 10: A wall-clock comparison of our approach with a genetic algorithm on the Super
Mario Bros domain as a function of the number of levels required by the GA to be acceptable.
Lower is better. Mean and standard deviation over 10 random seeds are shown.
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