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1. The Value Function
Lemma 3. If π is a proper policy then Vπ is bounded and Vπ,n → Vπ as n→∞.

Proof. Since both the reward function and the KL-divergence term are bounded we can find an M > 0 such that
|r − τKL[π||π̄]| < M . Then, for any state s in S we have

∞∑
t=0

∫
|r − τKL[π||π̄]|dPπs ≤M

∞∑
t=0

Pπs (st 6∈ G) <∞. (1)

Hence, by Rudin (1987, Theorem 1.38), Vπ,n → Vπ as n→∞. Finally, taking the supremum of (1) over S proves that Vπ
is bounded.

Lemma 4. Let π be a continuous proper policy and f : S → R be a bounded measurable function. Then

sup
s∈S

∣∣∣∣∣
∞∑

t=n+1

Eπs [f(st)]

∣∣∣∣∣→ 0 as n→∞.

Proof. For each state s in S we have
|Eπs [f(st)]| ≤ ||f ||∞Pπs (st 6∈ G).

It follows that

sup
s∈S

∣∣∣∣∣
∞∑

t=n+1

Eπs [f(st)]

∣∣∣∣∣ ≤ sup
s∈S

∞∑
t=n+1

|Eπs [f(st)]| ≤ ||f ||∞ sup
s∈S

∞∑
t=n+1

Pπs (st 6∈ G).

Since π is proper the sum
∑∞
t=0 P

π
s (st 6∈ G) converges uniformly on S so the tail

∑∞
t=n+1 P

π
s (st 6∈ G) must converge

uniformly to 0 as n→∞.

Corollary 2. Let π be a proper policy and f : S → R be a bounded measurable function. Then Eπs [f(st)]→ 0 as t→∞
for every state s in S.

2. The Bellman Operators
Lemma 5. (Hernández-Lerma & Muñoz de Ozak, 1992, Remark 2.2) Let Assumption 1 hold and let f : S → R be an upper
semicontinuous and bounded from above. Then the map

a 7→
∫
S
f(s′)ρ(s,a)(ds

′)
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is upper semicontinuous for each state s in S.

Lemma 6. Let π be a policy and let V1, V2, . . . , V, U be bounded, real-valued and measurable functions on S then:

(a) Tπ is monotone, U ≤ V implies TπU ≤ TπV .

(b) T is monotone, U ≤ V implies T U ≤ T V .

(c) If Vn ↑ V then T Vn ↑ T V .

(d) If Vn ↓ V then T Vn ↓ T V

Proof. (a) Basic property of integrals. (b) Follows from (a).

(c) Suppose that Vn ↑ V . Then for any policy π, an application of the monotone convergence theorem gives TπVn ↑ TπV .
Making use of Hinderer (1970, Lemma 3.14) to interchange the limit and supremum we have

lim
n→∞

[T Vn](s) = lim
n→∞

sup
π

[TπVn](s)

= sup
π

lim
n→∞

[TπVn](s)

= sup
π

[TπV ](s) = [T V ](s),

for every state s in S. Furthermore, by part (b), the operator T is monotone so T Vn ↑ T V .

(d) Since log and exp are continuous functions the monotone convergence theorem gives us LVn ↓ LV . But, by Lemma 1,
T Vn = LVn so T Vn ↓ T V .

Lemma 7. Let π be a proper policy and V : S → R be a bounded measurable function. Then T nπ V → Vπ as n→∞.

Proof. For every state s it follows, from the definition of Tπ , that

[T nπ V ](s) = Eπs,n

[
n−1∑
t=0

(
r(st, at)− τKL[πst ||π̄st ]

)
+ V (sn)

]
.

Since π is proper, by Corollary 2, the expectation Eπs,n[V (sn)] converges to 0 as n→∞. Now, taking limits we have, by
Lemma 3, that

lim
n→∞

[T nπ V ](s) = lim
n→∞

Eπs,n

[
n−1∑
t=0

r(st, at)− τKL[πst ||π̄st ]

]
= Vπ(s).

Therefore, T nπ V converges pointwise to Vπ .

Lemma 8. Let π be a proper policy, then the family of functions {T nπ Vπ}∞n=1 is uniformly bounded.

Proof. First note that T nπ Vπ is well-defined for all n since, by Lemma 3, Vπ is bounded and measurable. By Corollary 2 we
can find an N in N such that |Eπs,n[V (sn)]| < 1 for all n ≥ N . Put K := maxn<N |Eπs,n[V (s)]|, then using Lemma 3 we
have

|[T nπ Vπ](s)| =

∣∣∣∣∣Eπs,n
[
n−1∑
t=0

(
r(st, at)− τKL[πst ||π̄st ]

)
+ Vπ(sn)

]∣∣∣∣∣
≤ Eπs,n

[
n−1∑
t=0

∣∣r(st, at)− τKL[πst ||π̄st ]
∣∣]+

∣∣∣∣Eπs,n[Vπ(sn)

]∣∣∣∣
≤M

∞∑
t=0

Pπs (st 6∈ G) + 1 +K

for all states s. Taking the supremum over S and using the definition of proper policies proves the result.
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Lemma 9. Let π be a proper policy. Then the value function Vπ is the unique bounded, measurable solution of the Bellman
equation Vπ = TπVπ .

Proof. First we show that Vπ satisfies the Bellman equation. By the definition of Tπ we have

[T n+1
π Vπ](s) =

∫
A

(
r(s, a) +

∫
S

[T nπ Vπ](s′)p(s,a)(ds
′)

)
πs(da)− τKL[πs||π̄s].

By Lemma 8 the family of functions {T nπ Vπ}∞n=1 is uniformly bounded. Using the bounded convergence theorem and
Lemma 7 we have

Vπ(s) =

∫
A

(
r(s, a) +

∫
S
Vπ(s′)p(s,a)(ds

′)

)
πs(da)− τKL[πs||π̄s].

Therefore, Vπ = TπVπ. For uniqueness, suppose that V is bounded and measure and that V = TπV . Then V = T nπ V and
letting n→∞ we get V = Vπ by Lemma 7.

Lemma 10. Let Assumption 2 hold. Let π be a stationary policy and V : S → R be a bounded measurable function such
that TπV ≥ V . Then π is proper and V ≤ Vπ .

Proof. Since Tπ is monotonic we have that

V (s) ≤ [T nπ V ](s) = Eπs,n

[
n−1∑
t=0

(
r(st, at)− τKL[πst ||π̄st ]

)
+ V (sn)

]
. (2)

Taking the limit superior as n→∞ gives

V (s) ≤ lim sup
n→∞

Eπs,n

[
n−1∑
t=0

r(st, at)− τKL[πst ||π̄st ]

]
+ ||V ||∞

= Vπ(s) + ||V ||∞.

If π is improper then Vπ is unbounded below, contradicting the above. Therefore π is proper. Finally, in view of Lemma 10,
taking the limit as n→∞ in (2) gives V ≤ Vπ .

Lemma 11. If V : S → R is a bounded measurable function satisfying the optimality equation V = T V then V is unique.

Proof. Suppose that there are bounded measurable functions V and V ′ satisfying V = T V and V ′ = T V ′ respectively.
Then by Lemma 1 there are policies π = B[V ] and π′ = B[V ′] such that V = TπV and V ′ = Tπ′V ′. By Lemma 10 both π
and π′ are proper so, by Lemma 9, V = Vπ and V ′ = Vπ′ . But, by definition, V = T nV ≥ T nπ′V for all n in N. Taking
n→∞ gives V ≥ V ′. The same argument shows that V ′ ≥ V so T has at most one fixed point.

Lemma 12. Let Assumptions 1 and 2 hold and suppose that the optimal value function is bounded above. If {Vπn
}∞n=1 is a

sequence of value functions generated from soft-policy iteration starting from any proper policy, then Vπn
↑ V and V is the

unique bounded fixed point of T .

Proof. Suppose that π0 is a given proper policy π0. We use π0 as the initial policy for a policy iteration procedure. Suppose,
that we have generated n proper policies π0, . . . , πn−1 via soft-policy iteration with

Vπ0 ≤ T Vπ0 ≤ Vπ1 ≤ . . . ≤ Vπn−2 ≤ T Vπn−2 ≤ Vπn−1 . (3)

Then we choose πn = B[Vπn−1
]. Then, by Lemma 1, the policy πn satisfies Tπn

Vπn−1
= T Vπn−1

and we have that

Vπn−1
= Tπn−1

Vπn−1
≤ T Vπn−1

= Tπn
Vπn−1

.

It follows, by Lemma 10, that πn is proper. Also, by the monotonicity of Tπn we have

Vπn
= lim
m→∞

T mπn
Vπn−1

≥ Tπn
Vπn−1

= T Vπn−1
≥ Vπn−1

.
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Therefore, we can use soft policy iteration to construct a sequence {πn}∞n=1 of proper policies with

Vπn
≤ T Vπ ≤ Vπn+1

. (4)

Since the sequence of value functions is non-decreasing Vπn converges to some function V with V ≤ V ∗. By assumption
V ∗ is bounded above so V is bounded. From Lemma 6 we have T Vπn ↑ T V . Taking the limit of (4) as n→∞ shows that
V = T V .

Lemma 13. Let Assumptions 1 and 2 hold and suppose that the optimal value function is bounded above. If {Vπn}∞n=1 is
generated by soft-policy iteration starting from any proper policy then there exists a policy π such that Vπn ↑ Vπ .

Proof. Suppose that {Vπn}∞n=1 be generated by soft-policy iteration. By Lemma 12, the sequence of value functions
{Vπn}∞n=1 is non-decreasing and bounded so {Qπn}∞n=1 is non-decreasing and bounded as well. Therefore, the monotone
convergence theorem give us

lim
n→∞

Qπn(s, a) = r(s, a) +

∫
S
V (s′)ρ(s,a)(ds

′) = Q(s, a),

where V is defined in Lemma 12. Now, by Schäl (1974, Lemma 4)1 there exists a policy π such that for every state s in S,
πs is an accumulation point of {πns }∞n=1. Therefore, for a fixed state s we can find a subsequence {πnk

s }∞k=1 converging
weakly to πs. We claim that Vπ = V .

We begin by showing that V ≤ Vπ . Since Vπn ↑ V for n→∞ we have

V (s) = lim
n→∞

Vπn(s) = lim
k→∞

Vπnk (s)

≤ lim sup
k→∞

∫
A
Qπnk (s, a)πnk

s (da)− τ lim inf
k→∞

KL[πnk
s ||π̄s].

From Dupuis & Ellis (2011, Lemma 1.4.3) the KL-divergence is lower semicontinuous so

KL[µ||π̄s] ≤ lim inf
n→∞

KL[µn||π̄s]. (5)

On the other hand, Feinberg et al. (2014, Theorem 1.1) shows that

lim sup
n→∞

∫
A
Qπnk (s, a)πnk

s (da) ≤
∫
A
Q(s, a)πs(da) (6)

Then combining (5) and (6) we have

V (s) ≤
∫
Qπ(s, a)πs(da)− τKL[πs||π̄s] = [TπV ](s).

Therefore π is proper by Lemma 10 and Vπ ≥ V . Now we show the reverse inequality. From the proof of Lemma 12 we
have

TπVπn ≤ T Vπn ≤ V for all n in N.

By taking the limit as n→∞ and making use of the monotone convergence theorem and that Vπn
↑ V we get TπV ≤ V .

Then from Lemma 7 it follows that
Vπ = lim

n→∞
T nπ V ≤ V,

resulting in Vπ = V .

Lemma 14. The operator T has the cost shifting property i.e. if V : S → R is a bounded measurable function and δ ≥ 0,
then T V + δ1 ≥ T (V + δ1).

Proof. Follows from a simple calculation using the definition of T .
1with A replaced by P(A) and noting that P(A) is compact.
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Lemma 15. Let Assumptions 1 and 2 hold and suppose that the optimal value function is bounded above. Let π be a policy
such that soft-policy iteration, starting at any proper policy, converges to Vπ. Then soft-value iteration, starting from any
bounded measurable function, also converges to Vπ .

Proof. Let V be a bounded measurable function. We want to show that T nV → Vπ as n → ∞. To show this we will
sandwich T nV between to sequences that converge to Vπ . First we construct the lower sequence in the sandwich. Let δ > 0.
Then there is a unique bounded measurable function Vδ such that

Vδ + δ1 = TπVδ.

To see this, note that since π is proper, it must also be proper for a shifted problem where the reward is decreased by δ so
the equation V = TπV − δ1 must have a unique (bounded and measurable) solution. Additionally, it is clear from this
argument that Vδ ≤ Vπ . In view of this and the monotonicity of T we have

Vπ = T Vπ ≥ T Vδ ≥ TπVδ = Vδ + δ1 ≥ Vδ.

Using the monotonicity of T again it follows that

Vπ = T nVπ ≥ T nVδ ≥ T n−1Vδ ≥ Vδ for all n in N.

Therefore, {T nVδ}∞n=1 is a non-decreasing sequence of functions bounded above by Vπ. Hence T nVδ ↑ V̂δ for some
bounded measurable function V̂δ . It follows, by Lemma 6, that

V̂δ = lim
n→∞

T nV̂δ = T V̂δ,

so V̂δ satisfies the optimality equation. But Vπ is the unique solution to the optimality equation so V̂δ = Vπ and T nVδ ↑ Vπ .
Next, we construct the upper sequence in the sandwich. Together with the cost shifting property (Lemma 14), the
monotonicity of T gives

Vπ + δ1 = T Vπ + δ1 ≥ T (Vπ + δ1) ≥ T Vπ = Vπ.

Hence {T n(Vπ + δ1)}∞n=1 is a non-increasing sequence of functions bounded below by Vπ . Then the same argument used
above shows that T n(Vπ + δ1) ↓ Vπ . Now, since Vδ ≤ Vπ and π is proper we have

Vδ = TπVδ − δ1 ≤ TπVπ − δ1 = Vπ − δ1 < Vπ + δ1.

Thus, we can find a δ > 0 such that V lies between Vδ and Vπ + δ1. As a result, the monotonicity of T implies that

T nVδ ≤ T nV ≤ T n(Vπ + δ1).

Since T nVδ → Vπ and T n(Vπ + δ1)→ Vπ the proof is complete.

Theorem 1. Let Assumptions 1 and 2 hold and suppose that the optimal value function is bounded above. Then (i) there
exists an optimal stationary policy, (ii) the optimal value function is the unique solution to the Bellman optimality equation
(iii) soft value iteration converges to the optimal value function starting from any bounded function; and (iv) soft policy
iteration converges to the optimal policy starting from any proper policy.

Proof. From Lemmas 12, 13 and 15 we have that there exists a policy π such that (a) Vπ is the unique solution to the
optimality equation; (b) soft-value iteration converges to Vπ starting from any bounded function; and (c) soft-policy iteration
converges to Vπ starting from any proper policy. Finally, we show that π is an optimal policy. Let π′ be an arbitrary
policy. Then we have T nπ′0 ≤ T n0. Then taking the limit superior as n → ∞ gives Vπ′ ≤ Vπ. Since π′ was arbitrary
Vπ(s) = supπ′ Vπ′(s) for all states s in S.
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3. DQN Architecture and Hyperparameters
In our experiments, we used a DQN with the following architecture:

1. Three convolutional layers:

(a) Layer 1 has 3 input channels, 32 output channels, a kernel size of 8 and a stride of 4.
(b) Layer 2 has 32 input channels, 64 output channels, a kernel size of 4 and a stride of 2.
(c) Layer 3 has 64 input channels, 64 output channels, a kernel size of 3 and a stride of 1.

2. Two fully-connected linear layers:

(a) Layer 1 has input size 3136 and output size 512 and uses a ReLU activation function.
(b) Layer 2 has input size 512 and output size 4 with no activation function.

We used the ADAM optimiser with batch size 32 and a learning rate of 10−4. We trained every 4 timesteps and update the
target Q-network every 1000 steps. Finally we used ε-greedy exploration, annealing ε to 0.01 over 100000 timesteps.
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