
1

Hierarchically Composing Level Generators for the
Creation of Complex Structures

Michael Beukman, Manuel Fokam, Marcel Kruger, Guy Axelrod, Muhammad Nasir,
Branden Ingram, Benjamin Rosman, Steven James

Abstract—Procedural content generation (PCG) is a growing
field, with numerous applications in the video game industry and
great potential to help create better games at a fraction of the cost
of manual creation. However, much of the work in PCG is focused
on generating relatively straightforward levels in simple games,
as it is challenging to design an optimisable objective function
for complex settings. This limits the applicability of PCG to more
complex and modern titles, hindering its adoption in industry.
Our work aims to address this limitation by introducing a compo-
sitional level generation method that recursively composes simple
low-level generators to construct large and complex creations.
This approach allows for easily-optimisable objectives and the
ability to design a complex structure in an interpretable way by
referencing lower-level components. We empirically demonstrate
that our method outperforms a non-compositional baseline by
more accurately satisfying a designer’s functional requirements
in several tasks. Finally, we provide a qualitative showcase (in
Minecraft) illustrating the large and complex, but still coherent,
structures that were generated using simple base generators.

I. INTRODUCTION

Procedural content generation (PCG) is a research field
focused on automatically generating game content, such as
levels, maps and music [1]. PCG has several benefits: it is often
cheaper than manually designing content [2], and it allows
for significantly more content to be generated than would
otherwise be possible through human creation [3, 4]. PCG
has recently garnered more attention [5], leading to impressive
results in numerous games [6, 7, 8].

However, much of the research done in the field of PCG
focuses on simple, 2D tilemap games, such as Super Mario
Bros, The Legend of Zelda, and maze games [8, 9, 10, 11, 12].
While these are useful testbeds, they are often very simple, and
do not exhibit complex structures. This focus on simplicity
makes it non-trivial to generalise these methods to more
complex and modern games. Furthermore, few methods focus
on, or excel at, generating large and complex levels, which is
a necessary step for PCG to become more mainstream [13].

This has led to recent research that applies PCG to
more complex titles [14, 15, 16, 17], particularly Minecraft.
Minecraft is a 3D, discrete voxel-based game, making it
amenable to grid-based PCG methods originally developed
for 2D tilemaps. It is also more complex than these afore-
mentioned games and thus provides a useful domain to bridge
the gap between traditional and modern games.

Despite progress in the field, there are still several shortcom-
ings to current methods. Some rely on a developer manually

School of Computer Science and Applied Mathematics, University of the
Witwatersrand.

designing level components [18], which can be costly [2]
and difficult to transfer to new games [10]. Other approaches
generate levels that lack core functional requirements, such as
being playable [14]. Lastly, some methods generate relatively
small and simple structures [16, 17], limiting their applicability
to complex games.

Our work aims to address these limitations by proposing
an approach that decomposes the problem of generating a
complex and large-scale level into smaller, but manageable
pieces. For instance, it is simple to generate an abstract,
high-level layout of a town (by considering houses, roads
and gardens as the individual building blocks) while ensuring
all houses are reachable via roads. Similarly, it is relatively
straightforward to learn to generate a single house, garden, or
farm. Composed together, however, these simple generators
can easily generate a fully-fledged, and functional, town.

In our method, multiple generators are hierarchically com-
posed to generate large and complex structures. This is in-
spired by hierarchical reinforcement learning [19], where a
complex task is broken down into smaller components and an
agent learns how to optimally perform each subcomponent. We
break the construction of a high-level structure (e.g., a town)
into simple subtasks (e.g., houses, gardens, etc.) and train
independent agents to generate these individual components.
Furthermore, instead of manually designing level elements,
our method allows a designer to specify an objective function,
i.e., what constitutes a “good” component.

This approach has three main benefits: (1) due to the inde-
pendence, users can modify the creation of each component
(at different levels of abstraction) in isolation; (2) the combi-
natorial explosion in the number of levels that can be gener-
ated [20]; and (3) the ability to specify the desired structure
by referencing subcomponents, allowing easier generation of
complex levels compared to normal, non-hierarchical methods.

We extend PCGNN [9], a recent method which uses
neuroevolution and novelty search to evolve diverse level
generators, by hierarchically composing these independent
generators to create large and complex structures in tile-
based games. We demonstrate that using composition makes
it significantly easier to generate complex structures compared
to using a single, non-compositional generator, an effect which
becomes more pronounced as we increase the complexity of
the low-level structures. Furthermore, we can automatically
generate large-scale towns and cities by specifying a few,
simple objectives.1

1Code is available at https://github.com/Michael-Beukman/MCHAMR

ar
X

iv
:2

30
2.

01
56

1v
2

 [
cs

.A
I]

 1
9

Ju
l 2

02
3

https://github.com/Michael-Beukman/MCHAMR

2

II. BACKGROUND

A. Hierarchical and Compositional Reinforcement Learning

Reinforcement learning (RL) [21] is a field focused on
solving sequential decision-making problems, where an agent
interacts with an environment (e.g., by placing specific tiles in
a tilemap level) and receives a scalar reward signal indicating
how good an action was (e.g., obtaining a high reward when
removing a tile that creates a path in a maze [10]).

However, long-horizon tasks require a long sequence of
actions to solve (e.g., generating a level by sequentially placing
many tiles) and are often challenging for standard RL meth-
ods [19, 22]. Hierarchical RL addresses this by decomposing
complex tasks into (1) smaller subtasks and a (2) top-level
policy that selects which subtask to perform [19, 23]. In
compositional RL, agents compose low-level skills to perform
more complex behaviours, allowing tasks to be specified in a
more understandable way by referencing these skills [20].

B. Evolutionary Algorithms

Many PCG methods [1, 8, 11] use aspects of evolutionary
computing, a subclass of optimisation algorithms that attempt
to mimic natural selection [24]. Genetic algorithms (GAs)
usually consist of a collection (or population) of individuals,
each possessing a genome which describes the individual (e.g.,
an integer vector representing the height of a platform [11]).
These genomes are mapped to phenotypes, which can be
thought of as the result or instantiation of this individual in the
actual problem domain (e.g., a level generated using the given
height information). To create the next generation, the current
population’s high-performing individuals (determined by the
fitness function) are merged through crossover to produce
children, which are then subjected to slight mutations.

1) NeuroEvolution of Augmenting Topologies (NEAT):
NEAT [25] is a genetic algorithm that evolves the weights and
structure of neural networks. NEAT starts with a population
of simple networks with no hidden layers, which gradually
increase in complexity through evolution, to better solve the
problem under consideration.

2) Novelty Search: Novelty search [26] rewards individuals
based on their novelty compared to the population, instead
of their objective performance (as in traditional genetic algo-
rithms). This results in improved exploration and can help to
solve hard or deceptive2 problems.

C. PCGNN

PCGNN [9] is a method that uses NEAT [25] and novelty
search [26] to evolve level generators. The main goal of this
work is to learn reusable level generators that can quickly
generate multiple different levels, as opposed to searching
for single levels each time one is desired. Each individual
in this population is a neural network, which can be used to
generate multiple levels. To obtain a level from a network,
an initial, random, tilemap is created. Then, for each tile,
the neural network receives as input the surrounding tiles

2Deceptive problems are those where directly maximising fitness can lead
to being stuck in local minima [26, 27].

and outputs the current center tile. This process is repeated,
sequentially, for each tile. PCGNN generally uses multiple
fitness functions: (1) the normal novelty search objective,
to incentivise exploration; (2) intra-generator novelty, which
incentivises one neural network to generate multiple diverse
levels; and (3) one or more feasibility fitness functions, which
describe the feasibility criteria for the specific game (e.g.,
solvability in a maze). PCGNN generates levels quickly and
can generalise to unseen level sizes, allowing the generation
of arbitrarily-sized levels without retraining.

III. RELATED WORK

A. General PCG

Although there are numerous approaches to PCG, many
focus on generating simple levels, and are therefore difficult to
generalise to more complex settings, such as modern games.
Search-based techniques, such as evolutionary algorithms, are
commonly used to generate levels that maximise a specific
objective function [1, 8, 9, 11, 17]. Similarly, the recent
paradigm of Procedural Content Generation via Reinforcement
Learning generates levels using RL, training an agent policy to
sequentially place tiles to maximise some reward [10, 16, 28].
However, it is challenging to design a monolithic objective or
reward function that incentivises the generation of complex
and functional structures while being optimisable [13]. Other
methods rely on a dataset of existing content (which may not
be available for many games), applying machine learning to
generate novel content [29, 30, 31].

1) Generating Complex Levels: While many approaches fo-
cus on simple 2D tile-based games, such as Super Mario Bros
and The Legend of Zelda, other work rather aims to generate
more complex content. One notable example is the Generative
Design in Minecraft (GDMC) competition, where the task is
to generate an entire settlement in Minecraft [15, 18]. This
competition aims to improve the generation of holistic and
complex constructions (e.g., an entire, coherent town instead
of just a single building) while taking the external environment
into account. Many submissions to this competition, however,
focused on more hand-designed, rule-based [17] methods
specifically designed for settlement generation, which may
require significant effort to generalise to other scenarios. This
has led to work that focuses on automatically generating lower-
level structures one would find in a settlement, such as build-
ings. For instance, Green et al. [32] use constrained growth
algorithms to separately generate the building and floor plan,
which can be useful when customisation is desired. Barthet
et al. [17] use DeLeNoX [33], to evolve diverse building
generators for Minecraft using an autoencoder-based novelty
score. Here, the focus is on generating creative buildings,
rather than generating complex and functional structures or
how to combine these structures into an actual settlement.

2) Adversarial and Open-Ended Approaches: Recently,
PCG has also been used to generate a large number of diverse
levels on which machine learning agents can be trained,
leading to these agents becoming more robust [34, 35]. Level
generators and game-playing agents can often work in tandem,
where the generator generates levels that challenge the agent.

3

As the agent improves, the level generator must also improve
to generate more complex and harder levels [7, 36].

Most of these methods, however, focus on simple games
(such as mazes [37] or 2D terrains [38]), making it unclear
how to generalise them to more complex games. Furthermore,
the focus is often on obtaining robust and high-performing
artificial agents [37] instead of generating video game levels
to be played and enjoyed by humans. Prioritising the former
could lead to overly difficult levels. These levels may also
have different characteristics compared to human-designed
ones [39], complicating their use as a substitute for manual
content creation. Lastly, treating the generation process as
one large problem may limit the ability of the generator
to create levels with enough complexity to challenge the
machine learning agent. Instead, having multiple generators
that solve simpler problems at different levels of abstraction
could enable the generation of more complex and larger-scale
structures [40].

B. Compositional PCG

Much work has also been done on combining different PCG
methods to generate more complex pieces of content, or even
entire games [41]. For instance, Togelius et al. [42] combine
an Answer Set Programming (ASP)-based approach [43] with
a genetic algorithm that searches over variables for the ASP.
Liapis et al. [41] advocate for game design orchestration,
where different content generators are combined to generate
full, coherent, games. One benefit of this compositional ap-
proach is allowing algorithms to specialise in (and thus excel at
generating) specific pieces of content. There are still numerous
open problems in this field, however, such as how to best
coordinate automated generators and human designers.

Hierarchy can also be used to improve the generation speed
of PCG methods. For example, Smith and Bryson [44] find that
using ASPs to generate large levels is infeasibly slow but that
using hierarchy can lead to much faster generation. They first
generate the high-level structure of a level and subsequently
fill in the details within this fixed structure. However, this
approach uses hand-designed high-level structures, which may
not be easily generalisable to new games [13].

Snodgrass and Ontanon [40] also leverage hierarchy to
generate structures at different scales. From a set of example
levels, they extract a set of high-level and low-level patterns
and fit two multi-dimensional Markov chains to this data.
To generate a level, then, the high-level model generates the
structure while the low-level generator fills in the details. This
method results in improved generation compared to a non-
hierarchical approach, but requires example levels as training
data, which may not always be available [29].

Hierarchy can also be used to separately construct dif-
ferent aspects of a level. For instance, Dormans [45] first
generates the “mission”: the high-level task that the player
must complete. The physical layout of the level is then
generated based on the mission. Similarly, in Unexplored [46],
a graph representing the level is created by applying a set
of replacement rules to create, remove and modify nodes to
obtain certain properties. This graph is then mapped onto a

grid, and each node is transformed into a room [47]. Although
this approach is hierarchical, each of the 5000 replacement
rules is hand-designed, hindering application to other settings.

Another use of composition is to increase the resolution
of high-level sketches provided by a designer. For instance,
Liapis et al. [48] allow a designer to draw a high-level, low-
resolution sketch of a level. Then, using techniques such as
genetic algorithms, the PCG system replaces each high-level
tile with a more detailed and fleshed-out component. While
this can be used to obtain a high-resolution version of a
designer’s sketch, it may be less suitable when a complex
structure consisting of several specific components is desired.
Instead of hand-designing the high-level sketch, Liapis [49]
allows the designer to specify a fitness function that is used
to evolve it. The sketch is then parsed into a graph indicating
which segments are connected, thereby defining constraints
for each segment (such as the number and location of doors).
Using these constraints, each segment is evolved and placed in
the high-level sketch to form a complete level. While this work
is promising, it focuses on dungeon levels, without a clear way
to apply the same technique when generating other types of
levels. Furthermore, this approach directly evolves the sketch
and the low-level segments, meaning that evolution occurs at
generation time, which may be prohibitively slow [9].

Dormans and Leijnen [50] take a different perspective: their
two-step process first generates a large amount of diverse
content, and the second step reorganises this content into an
actual level. While this simplifies the generation step, the
content is reorganised without any hierarchical elements.

Other methods create levels by generating and combining
different layers, effectively composing together different gen-
erators. However, these methods generally focus on iteratively
furnishing a level, as opposed to hierarchically generating a
complex layout. For instance, Green et al. [51] first generate
the structure of a dungeon level—tiles such as walls and the
floor. Then, a different method furnishes this structure by
placing items such as treasure and enemies. Also following
a similar layered approach, Wu et al. [52] generate natural
levels. They break the level down into several layers such
as ocean, land, and forests, with each layer being generated
by a cellular automaton (CA). This approach is a promising
way to generate landscapes, but the handcrafted rules could be
difficult to generalise to other domains. Furthermore, although
CAs can generate landscapes, they may be less well-suited to
generating structures that satisfy certain complex constraints—
for instance, cities where houses must be reachable by roads.
Dwarf Fortress [53] also uses multiple layers; here, the world,
history and several other aspects evolve over time in a rule-
based simulation. This process begins by first generating the
world and progressively adding more specialised designed
systems. The world is created by generating an elevation map
using a randomised fractal, followed by multiple layers of
maps including temperature, rainfall and vegetation. Once the
world is created, the simulation of civilisation begins where
settlements are built, trade routes are formed, and wars are
fought. The simulation stops at a designated point in time,
and the player starts the game in a unique living world.

4

Road House Castle
Farm Wall

(a) High-level view of a town.

Road Grass Interior Tower
Wall Wall Wheat

(b) The town after composition.

(i) House

Wall Interior

(ii) Road

Road

(iii) Farm

Grass Wheat

(iv) Castle

House Tower

(c) Base components.

Town

WallRoad

Tower InteriorWall

InteriorWall

GrassWheat

CastleFarm House

House

(d) The tree structure for (b).

Figure 1: An example of MCHAMR, with the (a) high-level and (b) composed towns and (c) the base components. The tree
structure defining how components are combined is shown in (d), with leaf nodes corresponding to low-level tiles.

IV. HIERARCHICALLY COMPOSING LEVEL GENERATORS

Here we describe our approach, Multi-level Composition of
Hierarchical and Adaptive Models via Recursion (MCHAMR).

To illustrate our method, we first consider the example of
generating a simple medieval town. At a high level, we can
represent the town as a 2D tilemap, shown in Figure 1a, with
houses, a large castle and roads. Each of these components,
however, can be decomposed into simpler components; for
instance, a house that is a single tile in Figure 1a actually
consists of external walls and an empty interior, as shown in
Figure 1c. Using our composition algorithm (described below),
we can use the definitions of these smaller structures together
with the high-level map to obtain a fully-fledged and detailed
town, shown in Figure 1b. Furthermore, the user has control
over each component. Should they wish to make a similar town
but would prefer to replace or modify a specific structure, this
is possible without altering any of the other components.

To implement this method in an automatic way, we require
the concept of a generator g ∈ G. This object can generate
a tilemap W , which is represented as a 2- or 3-dimensional
matrix, where each element is taken from some tile set T .
Each generator optionally has a tile mapping Mg : T → G
that controls which subgenerators are used when this generator
places a specific tile. For instance, in the above example,
the town generator’s mapping specifies that the “house” tile
actually maps to the generator shown in the top left pane of
Figure 1c. In essence, we construct a tree (Figure 1d shows
the tree for the previous example), where each node is a level
generator, with parent nodes generating placeholders to be
filled by their children and leaf nodes producing the lowest-
level, non-abstract, structures. To generate the level, we start
at the root and traverse through the tree.

Finally, for each generator g, we also have Sg , which
indicates the size of the subtiles of this generator, i.e., the
size at which the next level of the hierarchy will be generated.
For example, if our town generator gtown produces an abstract
tilemap of size 10×10, and has an associated Sgtown

of 3×3,
then the final level will have size 30 × 30. Each tile in the
abstract map corresponds to a 3× 3 block of low-level tiles.

Given a set of generators, our algorithm (detailed in Al-
gorithm 1) works as follows: We start with the top-level

generator, which generates a tilemap (line 4 in Algorithm 1).
In standard PCG, the procedure would terminate here. We
instead go further and interpret each tile as an instruction to use
another generator and place its output at that location (lines 14-
16). Each of these lower-level generators can also be composed
of generators. If at any point, though, the generator does not
contain a tile mapping Mg , we end the recursion (lines 5-6).
The overall generation process is illustrated in Figure 2.

This method tends to produce blocky structures since each
lower-level tile is of the same size. To overcome this, we
combine connected tiles of the same type into a single, larger,
“logical” tile (line 12). Then, at generation time, we generate
one large structure of this size, instead of many small ones.
To achieve this, we find and merge contiguous rectangles by
attempting to expand the dimensions of each tile one at a
time until we can no longer do so. We repeat this process
at every level of the hierarchy, coalescing connected tiles
before recursively calling the subgenerators. Coalescing not
only improves the cohesiveness of the generated structure but
also gives the top-level generator more control over the scale
of the lower-level components. Figure 3 illustrates this process,
and Appendix D contains some example levels.

Now, if we are interested in using MCHAMR with automatic
level generators, they must satisfy some requirements. Specifi-
cally, the generators must generate levels quickly (as we need
to generate many low-level structures); be able to generate
structures of arbitrary sizes (as the sizes of the final level and
its components are not fixed beforehand); and generate many
diverse levels (to prevent the different structures from looking
identical, and thus uninteresting, to a player).

Although our approach is agnostic to the exact level gener-
ators used, one method that is particularly well-suited to act
as the low-level generator is PCGNN, which satisfies all of
our requirements. Additional benefits include that the training
time is generally low [9] and, while we can include detailed
domain knowledge, this is not required.

A. Using PCGNN in MCHAMR

Having presented the workings of MCHAMR, we next de-
scribe a concrete approach that uses PCGNN to train the low-
level generators. First we train each component separately,

5

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Generator

Figure 2: A high-level illustration of MCHAMR. We begin with a top-level generator, which generates an abstract tilemap. Each
tile in this map is an instruction to use a lower-level generator and to place its output at that location. Each of these generators
can be further composed of other generators. In the end, we obtain a fully-fledged level.

House Road

(a) (b)

Figure 3: (a) A level, and (b) the result after coalescing
connected tiles. Cyan tiles were coalesced into one larger tile.

using some objective function that describes a feasible indi-
vidual. Once each of these generators has been trained, we
can compose them together, needing only to specify which
tiles map to which generators. This has multiple benefits;
for instance, we can train and design multiple generators in
parallel, obtaining a repertoire of components that can be
composed later on. The approach is also modular, so we could
leverage the same generator for different purposes (e.g., a
house could be used in many different scenarios).

Additionally, we can also train generators faster in this
factored way compared to training one monolithic generator.
Consider building an n× n level that consists of some high-
level structure (e.g., an abstract map consisting of single-tile
houses and roads) and low-level components (e.g., a generated

Algorithm 1 MCHAMR

1: // We call this initially with the top-level generator, as well
as the desired size of the final level.

2: procedure GENERATE(g ∈ G, size ∈ Z2 ∪ Z3)
3: // Generate a map, possibly abstract, using g
4: map = MAKEMAP(g, size/Sg)
5: if Mg is null then
6: return map // Return map if this is the lowest level
7: end if
8: // Otherwise recurse to the next level in the hierarchy
9: // Create an empty map of sufficient size

10: FilledOutMap = Empty(size)
11: // For each position, tile and coalesced size in the map
12: for all pos, tile, Sc ∈ COALESCE(map) do
13: // Recursively generate using the appropriate size
14: NewMap = GENERATE(Mg(tile), size = Sg × Sc)
15: // Place this generated map at the correct location
16: FilledOutMap[pos×Sg : (pos+Sc)×Sg] = NewMap
17: end for
18: return FilledOutMap
19: end procedure

house). Let us compose the n × n level out of a high-level
structure of size

√
n×

√
n and low-level components of size√

n×
√
n. Now, during training, the flat method must generate

levels of size n× n. For the composed method, however, we

6

have two separate training procedures, each generating levels
of size

√
n×

√
n. Thus, the overall time complexity3 of training

the flat method would be O((n × n)) = O(n2), whereas
the composed method would be O(2(

√
n ×

√
n)) = O(n).

For large levels, this speedup in training time can be quite
significant. Note that during inference, however, each method
generates the same amount of tiles.

Furthermore, as there is no dependence between different
level generators during training, we can redefine the meaning
of a specific generator. For instance, a town generates a tilemap
containing houses, roads and gardens. We could also change
the interpretation of the individual tiles, resulting in the same
generator generating cities that consist of towns, highways
and parks. This effectively constructs multiple different tree
structures, with the same generator as the root and different
child generators. In general, this approach would work as long
as the same feasibility criteria are valid in both cases.

Finally, while PCGNN is particularly suited to be used as
the low-level generator in MCHAMR, this is by no means a
requirement. We could use other suitable level generators (e.g.,
[8, 28, 31]), hand-designed components, or a combination
of these. This provides a significant amount of control and
flexibility, which is useful in designing a game [54].

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Domains: We consider two domains to demonstrate the
capabilities of MCHAMR. We first quantitatively demonstrate
the effects of composition in a simple 2D town-building game.
We next experiment on Minecraft to demonstrate that our
approach can also be applied to more complex 3D games.

2) Experiments: We perform three main experiments in
this section. In Section V-B, we first illustrate the benefits
of our hierarchical generation approach as the complexity of
the lower-level structures increases. The second experiment,
in Section V-C, directly compares our hierarchical method
against a non-compositional, flat approach. Finally, in Sec-
tion V-D, we qualitatively evaluate our method by generating
complex towns and cities in Minecraft. More details about
our PCGNN implementation and our experiments, including
hyperparameters and exact fitness functions, are listed in
Appendices A and C, respectively. In our quantitative exper-
iments, we assess the extent to which each method fulfils
the fitness functions used during optimisation. This enables
us to measure how leveraging hierarchy can streamline the
optimisation process, resulting in improved fitness. Achieving
a higher fitness value corresponds to the generator more
faithfully realising the designer’s intended outcome.

B. Hierarchical Generation

A compositional approach allows us to simplify the task
of the top-level generator by abstracting away the details of
the lower-level components. In particular, for a compositional
approach to build a house, it requires a single action—placing

3We omit factors such as the population size and the number of generations
as they are kept constant for both approaches.

the high-level house tile. A non-compositional approach, how-
ever, requires a large number of coordinated actions—placing
each of the low-level tiles that make up the house. In this
experiment we compare these two paradigms, using a simple
town level with houses, gardens and roads.

To this end, we introduce the concept of window size, a
proxy for how complex the lower-level structures are. For
instance, a window size of 1×1 means that placing a single tile
is sufficient to generate a high-level structure, corresponding
to the compositional setting. A larger window size, such as
2 × 2, means that a house requires 4 coordinated actions to
build, which corresponds to a non-compositional approach.
Similarly, 5 × 5 means that a house requires 25 coordinated
actions, i.e., the low-level structures are harder to build.

Window Size = 1 Window Size = 2 Window Size = 5

Aggregated Level

Figure 4: The top row illustrates three generated levels, with
window sizes of 1×1, 2×2 and 5×5, respectively. The bottom
row shows the aggregated level, i.e., the level that each of the
above ones reduces to. The red squares indicate logical tiles
that were collapsed to the default tile of grass due to not being
fully populated with the same tile. Here, blue tiles are houses,
green tiles are gardens and grey corresponds to roads.

We implement this as follows (see Figure 4 for an example):
For a window size of 2 × 2, say, we consider each non-
overlapping 2 × 2 window as a single tile. If all the tiles
within a window of a certain size are identical, then a single
tile of that type is placed in the aggregated level. Otherwise,
the tile is replaced with a “default” tile—gardens in this case.
While we could change this rule (e.g., taking the majority
tile), our choice simulates that a certain number of coordinated
actions must be performed to generate a single component. By
contrast, in the compositional case, only one action is required.
In essence, the larger the window size, the more coordinated
actions are required to generate a single tile. We also consider
window sizes of 3×3, 4×4, 5×5 and 10×10, to evaluate how
the complexity of the low-level structures influences our final
performance. Note that we generate levels with an aggregated
size of 10 × 10 tiles. This means that, for a window size of
2 × 2, the number of total tiles is 20 × 20, which is then
aggregated into a 10×10 level (where each 2×2 block in the
large level is compressed to a single tile).

7

0 10 20 30 40 50
Generations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Fit

ne
ss

 -
To

ta
l

Fitness over time for different window sizes

Window Size (Number of Coordinated Actions)
1 × 1 (1)
2 × 2 (4)

3 × 3 (9)
4 × 4 (16)

5 × 5 (25)
10 × 10 (100)

Figure 5: A plot showing the maximum fitness value in the
population (i.e., how “correct” the generated levels are) over
time for different window sizes (i.e., how many coordinated
actions are required to build the lower-level structures). The
mean over 10 seeds is shown, with standard deviation shaded.

This experimental setup has the added benefit of being com-
parable, as each method uses the same fitness functions, and
the only difference is in the size of the generated structures.
The fitness functions used here are (1) reachability, where
houses must be reachable via roads, and (2) a probability
fitness, incentivising a roughly equal number of house, garden
and road tiles. See Appendix C for more details.

We compare the fitness of each method over time in
Figure 5, which indicates that using the compositional ap-
proach results in a higher final fitness value compared to the
other, non-compositional methods. The performance decreases
significantly when we have a much larger 10 × 10 window
size (corresponding to an overall level size of 100 × 100),
where each house requires 102 = 100 coordinated actions to
build. Even this is still significantly fewer actions than a real
Minecraft house. Overall, the results show that simplifying the
task of the top-level generator by abstracting away the details
of the lower-level components is beneficial.

C. Composition vs Flat Generation

Our next experiment directly compares MCHAMR against a
non-compositional baseline that generates the entire level us-
ing PCGNN. In particular, we are again interested in building
towns, this time attempting to replicate a specific, randomly
generated, town layout.

For the compositional approach, we learn two separate
generators for houses and towns, while the non-compositional
method generates the entire level at once. In particular, we
have a 25 × 25 level, consisting of a collection of 5 × 5
houses. The high-level town structure also has a size of
5× 5. The fitness functions used did not include novelty, and
measured the average overlap between the desired level and the
generated one. The desired levels use one set layout for houses,
where walls surround empty space, and a randomly generated
town layout. We generate 20 of these random town layouts,

0 20 40 60 80 100 120 140
Generations

0.4

0.5

0.6

0.7

0.8

Fit
ne

ss

Comparing the fitness of MCHAMR and PCGNN over time

MCHAMR PCGNN

Figure 6: Illustrating the fitness over time on 20 random town
layouts for MCHAMR (consisting of the composed town and
house generators) compared to the flat, non-compositional
method, corresponding to vanilla PCGNN. We first compute
the average fitness across 10 seeds and plot the mean and
standard deviation over the 20 layouts.

train a separate generator on each of them, and average the
fitness values obtained.

The fitness results over time are shown in Figure 6, where it
is clear that PCGNN’s fitness cannot touch that of MCHAMR.
Our composed method achieves significantly higher fitness,
and generates much more accurate levels than the flat method.
See Appendix C for examples of the generated levels.

D. Minecraft Showcase

Finally, we evaluate our method on Minecraft and show a
few qualitative examples of interesting and complex structures
that were generated by MCHAMR. We use the Evocraft [14]
library to place and visualise the generated structures in game.4

Here we generate 3D settlements, where each town consists
of houses, gardens and roads. Additionally, to demonstrate the
notion of reusing a single generator, we further generate cities
using the town generator, by redefining houses to be towns.
Concretely, we use the following generators, with Appendix
C discussing the fitness functions in more depth.
Town A high level 2D tilemap of a town. We used several

objectives, but (similarly to Section V-B) primarily re-
warded reachability and having roughly an equal number
of house, road and garden tiles.

House A 3D house, incentivised to have a roof, walls and
an empty interior. The house also had novelty and intra-
generator novelty objectives.

Garden A 2D tilemap with flowers, grass, ponds and trees.
The generator is incentivised to generate levels with at
least one of every tile, no more than 5% pond tiles,
between 20% and 70% grass tiles and trees that are not
too close to each other. Gardens and houses share the
same novelty objectives.

4https://github.com/real-itu/Evocraft-py

https://github.com/real-itu/Evocraft-py

8

Figure 7: A generated city and a zoomed-in portion of an
alleyway. The city and town generators are the same.

Figure 8: An annotated example of a city.

(a) Three levels from generator A. (b) Three levels from generator B.

Figure 9: Showing three levels each from two generators (a) and (b). Each generator comes from the same experiment, just
with different initial random seeds. Generator A has large swaths of gardens, with some towns around the center. Generator B
generally has gardens in the bottom and left sides, with towns in the middle and along the top and right edges.

In Figure 7, we use the same generator for the city and the
town. We also show a first-person view of a specific section
to illustrate the detail in each part of the generated settlement.

Figure 8 shows an annotated example of a generated city.
The large, high-level structure of the city is generated by the
top-level generator. Then, each tile that it places is transformed
into a town by the town generator. We see that coalescing
results in longer towns and the towns themselves, while not
identical, contain similar repeating structures.

In Figure 9, we illustrate the benefits of incentivising
novelty during training. In this figure, we use the same
houses and garden generators as before, alongside a town
generator that was trained using four fitness functions: (1)
Intra-generator Novelty; (2) Novelty Search; (3) Reachability;
and (4) a Probability fitness incentivising roughly an equal
number of houses, gardens and roads. We use the tile-pattern
KL-Divergence metric, with a pattern size of 2 × 2, as the
novelty distance function [55] and weigh the fitness functions
with ratios 1 : 1 : 4 : 4. We generate cities using the same
neural network as the towns. These levels show that if we
use the same generator to generate multiple levels, we can
obtain qualitatively different structures while still adhering
to a certain style. Furthermore, running the same training
procedure multiple times—with the same hyperparameters but
a different initial random seed—can result in very different
structures. Details about training, novelty objectives and a
comparison of novelty scores can be found in Appendix E.

Finally, we note that the structures we generate are very
large in the scale of standard PCG. For instance, Super Mario

Bros. levels have size 114×14. Much of the work in Minecraft
also generates relatively small structures, such as 7 × 7 × 7
mazes [16] or 20 × 20 × 20 lattices [17]. The composed
towns we generate can easily be 200 × 5 × 200 or larger,
totalling more than 100 000 blocks. Despite this massive scale,
we are still able to generate coherent structures and sensible
towns. Large settlements are also generated for the GDMC
competition [15], but unlike our approach, these generations
often require significant hand-designing effort [18].

VI. DISCUSSION

The approach introduced here, MCHAMR, follows a recent
trend that emphasises the importance of more complex and
open-ended creations in PCG [14, 15, 17]. We break the
generation problem down into separate components, and train
a model for each component. This is different from much
of the contemporary research on generative models, where
methods tend to train one monolithic model. We believe that
there are several good reasons for this factorisation. First, by
factorising each salient component of a level, each of these
can be changed separately without altering anything else. For
instance, suppose we have a good town generator that we are
satisfied with, but wish to change the house layout. If we had
one large model, it would need to be entirely retrained with
an alternative objective function, with no guarantee that the
other pieces would indeed remain unchanged. On the other
hand, when we factorise the components, each component
can be changed independently. Secondly, if we have separate
generators, each generator’s fitness function is much simpler

9

to create (for the designer) and also simpler to optimise (for
the learning algorithm). By contrast, it can be challenging
to design a single monolithic objective function for complex
tasks such as building a town. Even if we can create such an
objective, it would likely be hard to optimise by the agent.

Our approach does require a designer to specify the com-
ponents and desired hierarchy, as well as particular fitness
functions. We believe that this gives the designer immense
control over the generation, as they can completely specify
which components should be used, and how they should be
combined. Additionally, we believe that designing a fitness
function for each component—while requiring some effort—is
an elegant way to allow designers to specify what is defined as
good, without needing to design the components themselves.

Our method has numerous applications, such as (partially)
generating large open-world games. This would allow design-
ers freedom in specifying certain, reusable low-level com-
ponents that can be composed in numerous different ways,
thereby enticing players towards exploration.

Furthermore, in contrast to many other methods, we abstract
away details relevant to a particular game by having separate
high- and low-level generators. Separating these responsibili-
ties could enable the abstract generators to be used in a variety
of games, needing only to swap out the low-level generators
for each game. Relatedly, since we independently train the
generators, it would be possible to have a community-driven
database of useful generators, which can then be seamlessly
composed together to generate novel artifacts. This could be
similar to Picbreeder [56],5 where users collectively contribute
to the generation of many interesting images.

VII. LIMITATIONS AND FUTURE WORK

Our method is just a first step in this direction, and there
are numerous avenues for future work. One promising avenue
would be to use a combination of different PCG methods as
low-level generators [8, 10, 16], instead of just PCGNN. For
instance, we could use data-based approaches to generate the
low-level components (using, e.g., existing house datasets),
while generating the high-level structure using a fitness-
based method. Furthermore, while our method is designed
particularly with tile-based games in mind, we believe that
it could be extended to other types of games by leveraging
more appropriate low-level generators. Our tile-based focus
may additionally lead to discretisation artifacts, as components
can only be placed on a rectangular grid. While this simplifies
the hierarchical computation, it may lead to blocky-looking
structures. Coalescing is one way to partially alleviate this
problem: by generating at a higher resolution and coalescing
similar tiles, we could obtain smoother shapes. Future work
could also explore other techniques to address this limitation.

While the coalescing rules we used were intentionally
simple, they can be made arbitrarily complex; for instance, a
designer may wish to only coalesce under certain conditions,
and leave most connected tiles as single components.

In future work, we would like to explore the use of quality-
diversity algorithms [57] to obtain a collection of diverse

5https://nbenko1.github.io/

and high-performing low-level generators, and use these inter-
changeably to obtain more diverse content. Furthermore, since
we use a 2D generator as the root, the generated levels do not
have any verticality. Adding vertical aspects to the levels (e.g.,
mountains, multi-story houses, etc.) would thus be valuable.

Finally, we have a clear separation between each component
without any explicit communication between components, be
it at the same or across different hierarchical levels. Thus,
all structure must come from the top-level generator, similar
to the top-down approach outlined by Liapis et al. [41], and
no emergent structure is generated via the interaction of the
low-level generators. This may carry some disadvantages, such
as neighbouring components being oblivious of one another,
leading to incoherent generations.

However, in our approach, this problem could be circum-
vented by adding more low-level components, and expanding
the tileset of the top-level generator—thereby increasing its
complexity. The tradeoff here is that this may require more
human effort in designing these additional generators (via their
fitness functions), and altering the existing hierarchy.

Despite these limitations, this independence enables us to
learn modular components that can be used in several settings,
whereas reuse would be more difficult if there is a tight
coupling between components. Furthermore, we allow the
designer to specify the structure and the high-level generator
in charge of implementing it. This gives the designer more
control compared to a case where the only structure is obtained
by the unpredictable interaction of the low-level generators.

Relatedly, independently training the generators does not
enable them to learn how to best combine their generated
components, or for one generator to make up for the shortfall
of another. Instead, the designer specifies the hierarchy and
fitness functions for each component. This shifts some of this
responsibility onto the designer, but avoids the problem where
the high- and low-level generators are incompatible. Future
work could consider modifications to this, where generators
are jointly trained. This idea could also relate to more open-
ended avenues, where the generated structures increase in
complexity over time, as opposed to reaching an endpoint
when the feasibility fitness is maximised [14, 17]. One way to
achieve this could be learning how to dynamically compose
different generators, or using learned objective functions.

VIII. CONCLUSION

We introduce MCHAMR, a compositional approach to level
generation, which leverages multiple simple generators to
generate large and complex structures. Our approach has
multiple benefits, such as (1) being configurable, allowing the
designer to choose which low-level generators are used; (2) it
being straightforward to combine different generators, without
needing to specify one monolithic fitness function; and (3)
simplifying each generator’s task by decomposing the prob-
lem, potentially allowing for less training or smaller (and thus
faster) models. We demonstrate that our approach improves
generation compared to a non-compositional approach, and
that it is able to generate large-scale and complex settlements
in Minecraft. Ultimately, we hope that this work is a step

https://nbenko1.github.io/

10

towards more complex and large-scale generations, which is
necessary for the adoption of PCG in the gaming industry.

ACKNOWLEDGMENTS

Computations were performed using HPC infrastructure pro-
vided by the MSS unit at the University of the Witwatersrand.
We thank the reviewers for their insightful comments, which
helped to strengthen the final version of this paper.

REFERENCES
[1] J. Togelius, G. Yannakakis, K. O. Stanley, and C. Browne, “Search-

based procedural content generation: A taxonomy and survey,” IEEE
Trans. Comput. Intell. AI Games., no. 3, 2011.

[2] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, 2013.

[3] G. Smith, “Procedural content generation: An overview,” Level Design
Processes and Experiences., 2017.

[4] O. Korn, M. Blatz, A. Rees, J. Schaal, V. Schwind, and D. Görlich,
“Procedural content generation for game props? A study on the effects
on user experience,” Comput. Entertain., vol. 15, no. 2, 2017.

[5] N. Brewer, “Computerized dungeons and randomly generated worlds:
From rogue to minecraft [scanning our past],” Proceedings of the IEEE,
vol. 105, no. 5, pp. 970–977, 2017.

[6] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
mario levels in the latent space of a deep convolutional generative
adversarial network,” in GECCO. ACM, 2018.

[7] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar,
“Adversarial reinforcement learning for procedural content generation,”
in CoG. IEEE, 2021.

[8] S. Earle, J. Snider, M. C. Fontaine, S. Nikolaidis, and J. Togelius,
“Illuminating diverse neural cellular automata for level generation,” in
GECCO. ACM, 2022.

[9] M. Beukman, C. W. Cleghorn, and S. James, “Procedural content
generation using neuroevolution and novelty search for diverse video
game levels,” in GECCO. ACM, 2022.

[10] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius, “PCGRL: procedural
content generation via reinforcement learning,” in AIIDE. AAAI, 2020.

[11] L. Ferreira, L. T. Pereira, and C. F. M. Toledo, “A multi-population
genetic algorithm for procedural generation of levels for platform
games,” in GECCO. ACM, 2014.

[12] N. Shaker, J. Togelius, G. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 mario AI championship: Level
generation track,” IEEE Trans. Comput. Intell. AI Games., no. 4, 2011.

[13] J. Togelius, A. Champandard, P. Lanzi, M. Mateas, A. Paiva, M. Preuss,
and K. O. Stanley, “Procedural content generation: Goals, challenges
and actionable steps,” in Artificial and Comput. Intell. in Games, 2013.

[14] D. Grbic, R. B. Palm, E. Najarro, C. Glanois, and S. Risi, “Evocraft:
A new challenge for open-endedness,” in Applications of Evolutionary
Computation. Springer, 2021.

[15] C. Salge, M. C. Green, R. Canaan, and J. Togelius, “Generative design in
minecraft (GDMC): settlement generation competition,” in FDG, 2018.

[16] Z. Jiang, S. Earle, M. C. Green, and J. Togelius, “Learning controllable
3D level generators,” arXiv preprint arXiv:2206.13623, 2022.

[17] M. Barthet, A. Liapis, and G. Yannakakis, “Open-ended evolution for
Minecraft building generation,” IEEE Trans. Games., 2022.

[18] C. Salge, M. C. Green, R. Canaan, F. Skwarski, R. Fritsch, A. Bright-
moore, S. Ye, C. Cao, and J. Togelius, “The AI settlement generation
challenge in Minecraft: First year report,” Künstliche Intelligenz, 2020.

[19] S. Pateria, B. Subagdja, A. Tan, and C. Quek, “Hierarchical reinforce-
ment learning: A comprehensive survey,” ACM Comput. Surv., 2021.

[20] G. N. Tasse, S. D. James, and B. Rosman, “A boolean task algebra for
reinforcement learning,” in NeurIPS, 2020.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning - an introduction.
MIT Press, 1998.

[22] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine, “Why does
hierarchy (sometimes) work so well in reinforcement learning?” arXiv
preprint arXiv:1909.10618, 2019.

[23] B. Hengst, Hierarchical Approaches. Springer, 2012.
[24] D. E. Goldberg, Genetic Algorithms in Search. Addison-Wesley, 1989.
[25] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through

augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, 2002.

[26] J. Lehman and K. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary Computation., 06 2011.

[27] L. D. Whitley, “Fundamental principles of deception in genetic search,”
in Foundations of genetic algorithms. Elsevier, 1991, vol. 1.

[28] S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and J. Togelius,
“Learning controllable content generators,” in CoG. IEEE, 2021.

[29] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (PCGML),” IEEE Trans. Games, 2018.

[30] J. Liu, S. Snodgrass, A. Khalifa, S. Risi, G. Yannakakis, and J. Togelius,
“Deep learning for procedural content generation,” Neural Comput.
Appl., vol. 33, no. 1, 2021.

[31] T. Shu, J. Liu, and G. Yannakakis, “Experience-driven PCG via rein-
forcement learning: A super mario bros study,” in CoG. IEEE, 2021.

[32] M. C. Green, C. Salge, and J. Togelius, “Organic building generation in
minecraft,” in FDG. ACM, 2019.

[33] A. Liapis, H. P. Martı́nez, J. Togelius, and G. Yannakakis, “Transforming
exploratory creativity with DeLeNoX,,” in ICCC. ACC, 2013.

[34] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and
S. Risi, “Illuminating generalization in deep reinforcement learning
through procedural level generation,” in NeurIPS Workshop on Deep
RL, 2018.

[35] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying
generalization in reinforcement learning,” in ICML. PMLR, 2019.

[36] P. Bontrager and J. Togelius, “Learning to generate levels from nothing,”
in CoG. IEEE, 2021.

[37] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. Foerster,
E. Grefenstette, and T. Rocktäschel, “Evolving curricula with regret-
based environment design,” in ICML. PMLR, 2022.

[38] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired open-
ended trailblazer (POET): endlessly generating increasingly complex
and diverse learning environments and their solutions,” arXiv preprint
arXiv:1901.01753, 2019.

[39] A. Dharna, J. Togelius, and L. B. Soros, “Co-generation of game levels
and game-playing agents,” in AIIDE. AAAI, 2020.

[40] S. Snodgrass and S. Ontanon, “A hierarchical mdmc approach to 2d
video game map generation,” in AIIDE, vol. 11, no. 1. AAAI, 2015.

[41] A. Liapis, G. Yannakakis, M. J. Nelson, M. Preuss, and R. Bidarra,
“Orchestrating game generation,” IEEE Trans. Games., no. 1, 2019.

[42] J. Togelius, T. Justinussen, and A. Hartzen, “Compositional procedural
content generation,” in Workshop on PCG in Games, FDG, 2012.

[43] A. M. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” IEEE Trans. Comput.
Intell. AI Games., 2011.

[44] A. J. Smith and J. J. Bryson, “A logical approach to building dungeons:
Answer set programming for hierarchical procedural content generation
in roguelike games,” in 50th Anniversary Convention of the AISB, 2014.

[45] J. Dormans, “Adventures in level design: generating missions and spaces
for action adventure games,” in Workshop on PCG in games, 2010.

[46] Ludomotion, “Unexplored,” [PC Game], Delft, The Netherlands, 2017.
[47] BorisTheBrave, “Dungeon generation in unexplored,” https://www.

boristhebrave.com/2021/04/10/dungeon-generation-in-unexplored/,
April 2021, [Online; accessed 14-April-2023].

[48] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient world: Human-
based procedural cartography,” in EvoMUSART. Springer, 2013.

[49] A. Liapis, “Multi-segment evolution of dungeon game levels,” in
GECCO. ACM, 2017, pp. 203–210.

[50] J. Dormans and S. Leijnen, “Combinatorial and exploratory creativity in
procedural content generation,” in Workshop on PCG for Games, 2013.

[51] M. C. Green, A. Khalifa, A. Alsoughayer, D. Surana, A. Liapis, and
J. Togelius, “Two-step constructive approaches for dungeon generation,”
in FDG. ACM, 2019.

[52] Z. Wu, Y. Mao, and Q. Li, “Procedural game map generation using
multi-leveled cellular automata by machine learning,” in ISAIMS, 2021.

[53] T. Adams and Z. Adams, “Dwarf fortress,” [PC Game], Bay 12 Games,
2021. [Online]. Available: http://www.bay12games.com/dwarves/

[54] G. Lai, W. H. Latham, and F. F. Leymarie, “Towards friendly mixed
initiative procedural content generation: Three pillars of industry,” in
FDG. ACM, 2020.

[55] S. M. Lucas and V. Volz, “Tile pattern kl-divergence for analysing and
evolving game levels,” in GECCO. ACM, 2019.

[56] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,
J. T. Folsom-Kovarik, and K. O. Stanley, “Picbreeder: A case study
in collaborative evolutionary exploration of design space,” Evolutionary
Computation., 2011.

[57] J. Mouret and J. Clune, “Illuminating search spaces by mapping elites,”
arXiv preprint arXiv:1504.04909, 2015.

https://www.boristhebrave.com/2021/04/10/dungeon-generation-in-unexplored/
https://www.boristhebrave.com/2021/04/10/dungeon-generation-in-unexplored/
http://www.bay12games.com/dwarves/

11

[58] W. Luo, Y. Li, R. Urtasun, and R. S. Zemel, “Understanding the effective
receptive field in deep convolutional neural networks,” in NeurIPS, 2016.

[59] B. Fuglede and F. Topsøe, “Jensen-shannon divergence and hilbert space
embedding,” in ISIT. IEEE, 2004.

[60] V. Monga and B. Evans, “Perceptual image hashing via feature points:
Performance evaluation and tradeoffs,” IEEE Transactions on Image
Processing, vol. 15, no. 11, 2006.

[61] A. Hadmi, W. Puech, B. A. E. Said, and A. A. Ouahman, “Perceptual
image hashing,” in Watermarking-Volume 2. IntechOpen, 2012.

[62] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

APPENDIX

We structure the supplementary material as follows: Ap-
pendix A discusses the extensions and improvements we made
to PCGNN. Appendix B details some reproducibility details
and our experimental setup. Next, Appendix C lists the hyper-
paramters and in-depth definitions of the fitness functions we
used for each experiment. It also shows some examples of the
generated levels for our quantitative experiments. Appendix
D contains example levels in Minecraft with and without
coalescing. Finally, Appendix E contains more details about
the qualitative novelty results in the main text. In this section,
we also quantitatively compare the effect of several different
novelty distance functions and show some example levels
when training with each distance function.

APPENDIX A
EXTENSIONS TO PCGNN

We extend standard PCGNN by adding in additional fea-
tures useful for MCHAMR. The specific features we use are as
follows:
3D We simply generalise the generation procedure to three

dimensions, by considering a level as a W × H × D
block of tiles, and iterating through all of the tiles.

Multiple Iterations Using multiple iterations is also a rel-
atively simple change: after performing the generation
once, we use this as a starting point, and repeat the
process for multiple iterations. The intuition here is that
performing this process multiple times has the effect of
increasing the effective receptive field of the network.
This is similar to how deep convolutional neural networks
are able to focus on long-range dependencies by stacking
local interactions [58]. An approach like this has been
used successfully in PCG before; specifically, Earle et al.
[8] perform multiple processing iterations of a neural
cellular automaton to generate levels.

Input Center Tile This adds in the center tile the model is
currently focusing on as an input. This is beneficial in the
case of multiple iterations, so that the network can pass
along information to the subsequent iterations.

Various Starting Points While we mostly still use random
initialisations, some experiments instead initialised the
level with a specific “default” tile, so that the starting
points are all the same.

APPENDIX B
REPRODUCIBILITY DETAILS AND EXPERIMENTAL SETUP

As mentioned in the main text, we publicly release
our source code at https://github.com/Michael-Beukman/

MCHAMR. Implementation details, as well as instructions to
reproduce our results, can be found there.

When plotting the fitness value in our experiments, we use
the maximum fitness in the current population. This is done
because we use the best individual at the end of training as
our chosen generator. Furthermore, all of our fitness functions
are scaled between 0 and 1, so 1.0 corresponds to the optimal
fitness.

APPENDIX C
HYPERPARAMETERS

Here we detail the hyperparameters and exact setups used to
generate the images in the main paper. If a particular parameter
is not mentioned, the default value from Beukman et al. [9]
was used; for example, all of our experiments padded the
boundaries with −1.

Different sizes of hierarchy

Table I: Hyperparameters where we experimented with differ-
ent window sizes, i.e. differing complexity levels of the base
structures.

Name Value

One Hot Encoding True
Generations 50
Population Size 50
Number of Random Variables 1
Random Perturb Size 0
Number of Iterations 3
Input Center Tile Yes
Default Tile Garden
Novelty No Novelty
Level Starting Point Default Tile (Garden)
Number of levels for fitness calculations 5

In this experiment, we compared the results when using
different logical window sizes, from 1 × 1, representing a
composed approach, to 10× 10. For all of these experiments,
we used the hyperparameters shown in Table I, with Figure 10
containing some examples of generated levels. We calculated
the individual’s fitness as the average of the following two
fitness functions:
Probability : We compute the level’s tile distribution, rep-

resenting the frequency of each tile type in the level.
This fitness is the square root of the Jensen-Shannon
divergence [59] between the level’s tile distribution and
an “ideal” distribution of 40% house, 30% garden and
30% road.

Reachability : All houses must be reachable (with allowable
moves being up, down, left and right) from all other
houses via roads without being directly connected. This
fitness is calculated as a × b, where a = min (H20 , 1),
with H being the number of houses that have be-
tween 1 and 3 (inclusive) neighbouring road tiles. b =

1
(dhouse,road+1)(droad+1) , where di = min (|1− ci|, 10)
and ci is the number of disconnected regions of tile type
i. For example, if a level consists entirely of roads, with
a vertical line of gardens through the middle of the level,

https://github.com/Michael-Beukman/MCHAMR
https://github.com/Michael-Beukman/MCHAMR

12

(a) (b)

Figure 10: Showcasing example levels generated by the networks with different logical tile sizes for two different seeds.

then there would be two disconnected regions of road (to
the left and right of the vertical line). When calculating
chouse,road, we label houses and roads as the same tile,
and find the number of disconnected regions (i.e. those
regions separated by gardens). All of these operations can
be efficiently implemented using morphological image
operations, notably image labelling.6 Here, a incentivises
each house to be reachable by a road, without being
completely isolated from gardens or other houses; b
specifies that there must be one connected road region,
and that each house must be reachable from every other
house (as b is maximised when ci = 1, corresponding to
there only being one connected region).

Composition vs flat

Table II shows the hyperparameters we used when directly
comparing MCHAMR and PCGNN.

In this experiment, we have 20 random, but fixed, town
layouts. Thus, for each method (MCHAMR and PCGNN), we
have the same desired levels.

Figures 11 and 12 show the desired layout and the result
from both the composed and flat methods. While the composed
method does not generate perfect levels, they are significantly
closer to the desired layouts compared to the flat generator.
When using the flat method, the levels are very poor, not
containing house structures at all.

Showcase

Table III details the hyperparameters used for each showcase
result. The generator that we used to generate both towns
and cities is denoted as “Town & City”, while the generator
we used to illustrate the benefits of novelty is denoted as
“Novelty”. We used the following fitness functions for these
experiments:
House The house was incentivised to be a hollow cube, with

roof tiles at the top by setting the fitness to the average

6https://scikit-image.org/docs/stable/api/skimage.morphology.html#label

overlap between the generated house and the “ideal”,
hollow cube. Here we weighted novelty, intra-generator
novelty and this fitness using the ratio 1 : 1 : 8. The
novelty distance function was the Hamming distance,
which was denoted as Visual Diversity by Beukman et al.
[9].

Garden The garden had multiple fitness functions, incentivis-
ing it to have at least one tree and one flower, contain
some water tiles (less than 5%) and not be too dense (the
fraction of grass tiles must be between 0.2 and 0.7 and
trees should not be too close to each other). We weighted
novelty, intra-generator novelty and this fitness using the
ratio 1 : 1 : 4. The novelty distance function was again
the Hamming distance.

Town This incentivised the distribution of tiles to be 40%
house, 30% garden and 30% road (by computing the
square root of the Jensen-Shannon divergence between
this distribution and the actual one), in addition to the
houses being reachable via roads. This was calculated
as a+b

2 , with a and b defined in the Hyperparameters
Section.

City The average of two fitnesses, the first one incentivising
an equal number of houses, roads and gardens, calcu-
lated as 1

3

∑
i∈{house,road,garden} max(1−10(ni− 1

3)
2, 0)

where ni is the fraction of tiles of type i. The second
fitness is reachability, again calculated as a+b

2 .
Town & City This fitness incentivises the boundary of the

town to be houses, with an inner ring of roads, and a large
interior section of gardens. This fitness was calculated
as the average overlap between the ideal layout and the
actual level for each section. This generator also used a
context size of 2, i.e. it took in a 5× 5 block around the
current tile, instead of the normal 3× 3.

Novelty This used the exact same fitness functions as the
“Town” generator. It additionally used intra-generator
novelty, and normal novelty, using the 2×2 tile-based KL-
Divergence [55] as a distance metric. This is discussed
more in Appendix E.

https://scikit-image.org/docs/stable/api/skimage.morphology.html#label

13

(a) (b) (c)

Figure 11

(a) (b) (c)

Figure 12

The (a) desired, (b) composed and (c) flat levels for a (Figure 11) hand-designed or (Figure 12) randomly generated target
layout. Note that in the main text, we did not use the fitness results from the hand-designed layout and just illustrate it here
for comparison.

Table II: Hyperparameters used for the Composed vs Flat Towns

Name Flat (PCGNN) Composed Town Composed House

Level Size 25× 25 5× 5 5× 5
One Hot Encoding False False False
Generations 150 150 150
Population Size 50 50 50
Number of Random Variables 1 1 1
Random Perturb Size 0 0 0
Number of Iterations 5 5 5
Input Center Tile Yes Yes Yes
Novelty No Novelty No Novelty No Novelty
Level Starting Point Default (Road) Default (Road) Default (Air)
of levels for fitness calculations 5 5 5

Table III: This table details the hyperparameters used for the showcase images shown in the main text.

Name House Garden Town City Town & City Novelty

One Hot Encoding False False False False False False
Generations 500 100 150 150 350 150
Population Size 20 20 50 50 30 50
Number of Random Variables 1 2 1 1 1 2
Random Perturb Size 0 0.1565 0 0 0.1 0.2
Number of Iterations 10 1 10 10 5 10
Input Center Tile Yes No Yes Yes Yes Yes
Level Starting Point Random Random Default (Road) Default (Road) Random Random
of levels for fitness calculations 15 15 5 5 15 10
Novelty Distance Function Hamming Hamming No Novelty No Novelty No Novelty Various

APPENDIX D
COALESCING COMPARISON

Here we briefly provide an additional qualitative demon-
stration; in particular, illustrating the difference between using
coalescing and not. The generators used are the same as the
annotated example in the main text. These results are shown
in Figure 13, where we use the same generators, but (a) uses
coalescing whereas (b) does not. In Figure 13a, we can see
that there are fewer, but larger and more rectangular towns. In
Figure 13b, we do not coalesce, and each town is the same
size.

APPENDIX E
ADDITIONAL NOVELTY RESULTS

In this section, we illustrate quantitative diversity scores. In
particular, we use a town level with hyperparameters listed
in Table III, under the Novelty column. Each setting uses
at least two fitness functions, reachability and probability,
weighed equally. Three of the settings also use two additional
fitness functions, intra-generator novelty and standard novelty-
search, with weights: Intra-Novelty : Novelty : Reachability :
Probability = 1 : 1 : 4 : 4. We weigh novelty less than
the feasibility fitness functions, as it is generally easier to
generate diverse levels compared to generating feasible ones
(e.g., a random generator will have a high diversity and low
feasibility). If the novelty distance function is weighted too

14

(a) (b)

Figure 13: Demonstrating some generated cities. In (a) and (b) we use the same generators, but (a) uses coalescing whereas
(b) does not.

much, we found that the generators overprioritised novelty.
The aspect we change in this section is simply the novelty
distance function we use, and we consider the following ones:
None This uses no novelty objectives.
Hamming This uses the Visual Diversity (also called Ham-

ming distance), where the distance between two levels is
how many tiles are different between them.

PHash This uses the simple perceptual image hash [60, 61]
as implemented using the ImageHash library.7

KL(2× 2) This uses the tile-based KL-Divergence between
two levels [55]. In particular, for each level, it builds
up a probability distribution over 2 × 2 tile patterns,
and then computes the KL-Divergence between the two
distributions. Since the KL-Divergence is not symmetric,
we set this distance to d(A,B) = KL(A||B)+KL(B||A)

2 .
Furthermore, since the KL-Divergence is unbounded (and
PCGNN requires normalised fitness functions), we nor-
malise the distance as d(A,B) = clip(d(A,B)

8 , 0, 1), as
this resulted in similar novelty fitness values as the other,
normalised metrics.

We evaluate these different metrics as follows:
1) For each seed and at each generation, take the generator

with the highest fitness value.
2) Generate 100 10× 10 levels using this generator.
3) Compute the average pairwise distance between these

levels, using the Hamming, PHash, KL(2 × 2) and
KL(3× 3) metrics.

We follow this procedure because the generator with the
highest fitness is, by default, the generator that will be used
when generating levels. Secondly, we wish to measure how
diverse the levels are when generating several from a single
generator. Since there is a large amount of noise, for clarity, we
additionally smooth the plots using a Savitzky-Golay filter [62]
using a window size of 11 and a polynomial order of 3.

Figure 14 shows the results. In general, we can see that
having a novelty objective increases the diversity of the gen-
erators. Using the Hamming distance during training results in
the largest amount of diversity across all four metrics, followed
by PHash and KL(2 × 2). As expected, not incentivising
novelty results in the lowest diversity. For these plots, we
simply show the diversity of single 10×10 town levels instead
of measuring the diversity of composed levels. The reason is

7https://github.com/JohannesBuchner/imagehash

that many of these metrics are local; for instance, the KL-
Divergence only measures the similarity of small 2 × 2 tile
patterns. Thus, the diversity is largely controlled by the lower-
level generators. We therefore opt to qualitatively analyse the
compositional effects of novelty in the main text.

In Figure 15, we show some generated levels using each
of the distance functions. In general, the Hamming distance
results in levels with more randomness, while the other dis-
tance functions result in more geometric shapes, while still
generating diverse levels.

https://github.com/JohannesBuchner/imagehash

15

0 20 40 60 80 100 120 140
Generations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Di
ve

rs
ity

 o
f a

 si
ng

le
 g

en
er

at
or

Novelty Objective During Training
None Hamming PHash KL(2 × 2)

(a) Hamming

0 20 40 60 80 100 120 140
Generations

0.1

0.2

0.3

0.4

0.5

Di
ve

rs
ity

 o
f a

 si
ng

le
 g

en
er

at
or

Novelty Objective During Training
None Hamming PHash KL(2 × 2)

(b) PHash

0 20 40 60 80 100 120 140
Generations

0.5

1.0

1.5

2.0

2.5

3.0

Di
ve

rs
ity

 o
f a

 si
ng

le
 g

en
er

at
or

Novelty Objective During Training
None Hamming PHash KL(2 × 2)

(c) KL(2× 2)

0 20 40 60 80 100 120 140
Generations

1

2

3

4

5

6

7

8

Di
ve

rs
ity

 o
f a

 si
ng

le
 g

en
er

at
or

Novelty Objective During Training
None Hamming PHash KL(2 × 2)

(d) KL(3× 3)

Figure 14: The average pairwise diversity over 100 generated levels from the generator with the highest fitness over time. Each
plot contains the results when using a particular metric, and each line indicates the novelty objective used during training.

(a) No Novelty

(b) Hamming

(c) PHash

(d) KL(2× 2)

Figure 15: Showing three images from two generators (left and right) from the same experiment and different random seeds,
when using (a) no novelty and (b,c,d) the three other distance functions during training. Blue tiles are houses, green are gardens
and grey tiles are roads.

	Introduction
	Background
	Hierarchical and Compositional Reinforcement Learning
	Evolutionary Algorithms
	NeuroEvolution of Augmenting Topologies (NEAT)
	Novelty Search

	PCGNN

	Related Work
	General PCG
	Generating Complex Levels
	Adversarial and Open-Ended Approaches

	Compositional PCG

	Hierarchically Composing Level Generators
	Using PCGNN in MCHAMR

	Experiments and Results
	Experimental Setup
	Domains
	Experiments

	Hierarchical Generation
	Composition vs Flat Generation
	Minecraft Showcase

	Discussion
	Limitations and Future Work
	Conclusion
	Appendix A: Extensions to PCGNN
	Appendix B: Reproducibility Details and Experimental Setup
	Appendix C: Hyperparameters
	Appendix D: Coalescing Comparison
	Appendix E: Additional Novelty Results

